

I

Prospero

Library
September 1990

Prospero Software
^LANGUAGES FOR MICROCOMPUTER PROFESSIONALS

COPYRIGHT

Copyright © 1988, 1990 Prospero Software. All rights reserved.

This document is copyright and may not be reproduced by any method,
translated, transmitted, or stored in a retrieval system without prior written
permission of Prospero Software.

Permission is granted to Prospero C licence holders to abstract and use any
of the programming examples.

DISCLAIMER

While every effort is made to ensure accuracy, Prospero Software cannot be
held responsible for errors or omissions, and reserve the right to revise this
document without notice.

TRADEMARKS

Acknowledgement is made for references in this manual to Apple, Lisa and
Macintosh, which are trademarks of Apple Computer Inc., to WordStar,
which is a trademark of MicroPro International Corp., to Digital Research
and GEM, which are trademarks of Digital Research Inc., to Atari and Atari
ST, which are trademarks of Atari Corp., to Motorola and MC68000, which
are trademarks of Motorola Inc., and to Unix, which is a trademark of
AT&T Bell Laboratories.

Prospero C, Pro Fortran-77, Prospero Fortran, Pro Pascal and Prospero
Pascal are trademarks of Prospero Software.

Prospero Software, Inc. Prospero Software Ltd.
100 Commercial Street, Suite 306 190 Castelnau
Portland, Maine 04101 London SW13 9DH
U.S.A England

I

I

I

I

I

S LIBRARY

TABLE OF CONTENTS

l Introduction

2 Library header files

2.1 Diagnostics
2.2 Console input/output
2.3 Character handling
2.4 Directory handling
2.5 Operating system functions
2.6 Error numbers

2.7 File control macros

2.8 Unbuffered input/output
2.9 Line A graphics functions
2.10 Localization

2.11 Mathematics

2.12 Process control

2.13 Non-local jumps
2.14 Signal handling
2.15 Variable argument lists
2.16 Standard definitions

2.17 Stream handling
2.18 Standard utilities

2.19 String handling
2.20 Date and time

3 Library functions and macros

3.1 Introduction

3.2 Use of library functions
3.3 Character arguments
3.4 Functions and macros

3.5 Handling errors
3.5.1 Function result

3.5.2 The macro errno

3.5.3 Range and domain errors
3.6 Library function descriptions

Index of functions

Contents

1

2

<assert.h> 3

<conio.h> 3

<ctype.h>
<direct.h>

4

5

<dos.h> 6

<errno.h> 7

<fcntl.h> 8

<io.h> 8

<linea.h> 10

<locale.h> 10

<math.h> 11

<process.h>
<setjmp.h>
<signal.h>
<stdarg.h>

12

12

12

13

<stddef.h> 14

<stdio.h> 14

<stdlib.h> 17

<string.h>
<time.h>

18

20

21

21

21

22

22

23

23

23

24

25

258

LIBRARY 1 Introduction

1 INTRODUCTION

This volume describes the implementation of the Prospero C Library,
including a detailed description of each library function which is available to
be called from Prospero C programs.

Section 2 gives a breakdown of the library by header file. Each header file
defines several functions that are related in usage. Most of these are part of the
ANSI standard, but may contain functions that are not. Other header files have
been added by Prospero. Section 2 describes each header file, the functions and
macros it defines and how they relate with each other.

Section 3 gives a detailed description of each library function in turn, detailing
its parameters, return value and purpose, as well as giving a short example of
how it might be used. The introduction to Section 3 gives many details
common to many of the functions, including the usage of functions defined as
macros, and dealing with errors.

Section 4 gives an index of functions, specifying the header file that needs to be
included for each function.

This manual does not cover the AES and VDI bindings, which are treated
separately in volumes III and IV.

~7 Library header files 2 LIBRARY
2 LIBRARY HEADER FILES

This section gives an overview of the Prospero C Library organized by
purpose, by describing the contents of each library header file. Each section
includes a list of all the functions whose prototypes are found in the header file,
and a brief description of what sort of thing these functions are used for. They
also give general information which is relevant to all or most of the functions
listed, and indicate how the functions inter-relate. Often, there is a short
example program to illustrate the use of some of the functions to show how
they fit together.

In order to use any of the functions described below, the programmer should
ensure that the relevant header file is included, using a statement of the form

#include <header.h>

The angle brackets around the header file name indicate that the compiler
should look in the directory nominated for header files (see Volume I, Part I
for how this is done). Enclosing a filename in double quotes causes the
compiler to search for the given filename relative to the current directory, and
would be used to include C code if a large source is divided into several smaller
files for easier editing, for example.

It is normal practice to include all header files at the start of the program,
before any declarations or functions. It does not matter in what order the
header files are included, nor if any file is included more than once.

The header files limits . h and float .h, which define macros giving details
of the ranges of arithmetic types, are described in Volume I, appendix G.

The header files aesbind . h and vdibind . h, which define the AES and
VDI bindings, are described in volumes III and IV.

LIBRARY 3 Library header files

2.1 Diagnostics <assert.h>

The assert .h header file defines the assert macro. This is used to insert
diagnostics into a program in such a way that they can be easily disabled to
create a faster and smallerprogram when it is believed to be free of bugs. The
way inwhich it is used isdescribed indetail under assert, in section 3.

2.2 Console input/output <conio.h>

The conio.h header file defines the following functions concerned with
console input and output.

getch get character from keyboard
getche get character form keyboard, with echo
ungetch unget character from keyboard
kbh i t test if key pressed
put ch put character to screen

Thesefunctions are used to provide interaction with the console. They only get
or put single characters; for more powerful print and input functions refer to
stdio .h. Note that getting a characterfrom the keyboard is not equivalent to
getting one from standard input, nor is putting one to the screen equivalent to
putting one to standard output. Both standard input and standard output may be
redirected to refer to files rather than to the console - the console input/output
functions will not be affected by this. Also, unless the buffering mode of
standard input is changed, getting characters from standard inputwill cause the
program to wait until a whole line hasbeen typed, then return thecharacters in
the line one by one. Getting characters from the keyboard using one of the
functions in conio . h will return each character as it is typed.

None of the functions defined in conio.h are part of the draft ANSI standard.

e.g.,

/* function that reads all the characters from the */
/* buffer to leave it empty */

#include <conio.h>

void empty_buffer(void)
{ while (kbhit())

getch() ;

" Library header files

2.3 Character handling

The ctype. h headerfile defines thefollowing functions:

character is alphanumeric
character is a letter

character is an ascii character
character is a control character
character is a digit
character is a non-space printing character
character is a lower case letter
character is a printable character
character is a punctuation character
character is a white-space character
character is an upper case letter
character is a hex digit
a character to ascii character
a letter to lower case

a letter to upper case

The functions whose names begin is . . . are used to test whether a character
falls into a particular category, returning non-zero if thecharacter does fall in
the appropriate category, otherwise zero. Those beginning to... map
characters to a particular range of characters. These functions are described in
detail in section 3.

Most of the functions in ctype. h are in fact defined as macros,

e.g.,

#include <ctype.h>

char *s;

while (*s)

if isprint(*s)
putchar (*s++);

else

{ putchar ('.');
s + +;

'};

isalnum tests if a

isalpha tests if a

isascii tests fa
iscntrl tests if a

isdigit tests fa

isgraph tests fa

islower tests fa
isprint tests fa

ispunct tests fa

isspace tests fa
lsupper tests fa
isxdigit tests if a

toascii converts

tolower converts

toupper conve its

LIBRARY

<ctype.h>

I

[

I

I

I

I

I

I

I

I

I

LIBRARY 5 Library header files

2.4 Directory handling <direct.h>

The direct. h header file defines the following functions for manipulating
disks and directories.

chdir change directory
dr i vemap get bitmap of drives that are connected
getcwd get current pathname
getdf s get disk information
getdisk find disk drive
mkdir make directory
rmdir remove directory
setdisk change disk drive

These functions are rather operating system specific, and therefore not part of
the draft ANSI C standard. Directories can be added and removed, the current
disk drive and directory can be changed (a filename without a drive or path
specifier is assumed to refer to the current drive and directory). The disk
information returned by getdfs enables the size of the disk and the amount of
free space to be calculated. Disk drives that are available can be found using
drivemap, which is useful as functions such as setdisk do not indicate
whether the request is valid.

Note that chdir, rmdir and mkdir all allow a forward slash character to be
used in place of a backslash when specifying path names, as entering
backslashes in string literals requires two backslashes to be typed.

e.g.,

♦include <direct.h>

main ()

{ struct DISKINFO dinfo;

int i;

unsigned map;
long free;

map = drivemap(); /* Get bitmap of drives */
printf("Report on Disk Drives:-\n\n");
for(i=0;i<16;i++)

if (map & (1 « i))
(getdfs (i+1, Sdinfo);

free = dinfo.free * dinfo.bps * dinfo.spc;
printf ("Drive %c has %ld bytes free\n",

i+'A', free);

}

I

" Library header files 6 LIBRARY i

2.5 Operating system functions <dos.h>

The dos .h header file defines the following functions to call the Atari's i
operating system:

gemdos make a GEMDOS call
bios make a BIOS call

xbios make an XBIOS call

There are also a large number of macros expanding into calls of gemdos
which can be used for making calls to specific operating system functions.
Each of the above functions requires a variable number of parameters,
depending on which specific GEMDOS, XBIOS or BIOS function is required.
The first parameter is always an int, and specifies the function number. The
number, meaning and type of the other parameters depends on the value of this
first parameter - refer to Atari technical specifications for details of the
functions available. Most of the more important ones are duplicated by
Prospero C library routines.

None of these functions are part of the draft ANSI standard,

e.g.,

♦include <dos.h>

/* function to set time and date as returned by */
/* mktime function */

void set_time(long date_time)
(gemdos (0x2b, (int) ((date_time >> 16) & Oxffff))

gemdos (0x2d, (int) (date_time & Oxffff));
}

I

I

I

I

I
/* function to set the caps lock on or off */
void caps_lock(int status)
{ if (status)

bios(ll, (int) (bios (11, -1) | 16));

else

bios(ll, (int) (bios (11, -1) & -16)); i

} I

/* function to set the keyboard delay and repeat */
/* rate, but not allowing silly values */
void keyboard_rate(int delay, int rate) '
{ xbios (35,

(delay < 10) ? 10 : delay, .
(rate < 10) ? 10 : rate)

}

LIBRARY 7 Library header files

2.6 Error numbers <errno.h>

The errno. h header file defines the macro errno, which indicates the most
recent error detected by the Prospero C library, as well as macros for every
error number which may be placed in errno by the library. The usage of
errno and the treatment of errors by the library is described further in
section 3.5.2.

Many of the error number macros defined in errno . h originate from the
operating system or bios. Error codes returned by the gemdos and bios
functions are always negative, but are negated before being placed in errno
by the library so the all the error codes are positive.

The functions strerror andperror can be used to convert an error number
to a meaningful error message.

e.g.,

♦include <errno.h>

main ()

(FILE *stream = fopen("myfile", "w");
if (stream == NULL)
{ if (errno == EINVDRV)

{ /* bad drive. Ask for new drive and make */
/* that current drive */

else

perror ("Unable to open myfile");

Library header files 8_ LIBRARY

2.7 File control macros <fcntl.h>

The f cntl. h header file defines the following macros that may be used
when opening an unbuffered file (see section 2.8):

0_APPEND write starting at current end of file
0_creat create a file if it does not exist
0_excl if a file is to be created it must not already exist
0_ndelay not used - included only for compatibility
0_RDWR read or write
o_rdonly read only
0_TEXT open file in text mode
OJTRONC truncate file to zero length if it already exists
0_WRONLY write only

S_IREAD read permission attribute
S_IWRITE write permission attribute
S_subdir subdirectory attribute

This header file is not part of the draft ANSI standard.

2.8 Unbuffered input/output <io.h>

The io .h header file defines the following functions connected with the use
of unbuffered, operating system, level file handling:

access access status of file

chmod change file status
close close file

creat create file

dup duplicate handle
dup2 change handle
eof test if end of file

f ilelength find length of file
f indf irst find first file with name matching wildcard filename
f indnext find next file with name matching wildcard filename
lseek set position in file
open open file
read read from file

_read read from file (no translation)
tell find position in file
write write to file

write write to file (no translation)

I

LIBRARY 9 Library header files

These functions are not part of the draft ANSI standard, and it is usually
preferable to use the stdio functions to provide portability to other
machines. However, these functions are sufficiently standardized to be found
in almost all C compilers.

Unbuffered files are referred to by means of an integer called the file handle.
Handles 0, 1,2, and 3 are reserved, and refer respectively to standard input,
standard output, the auxiliary (serial) port, and the printer. Handles 4 and 5 are
also reserved, so that handles allocated to user files start at 6. The Atari does
not support a standard error stream, so the error handle is the same as the
screen handle.

In order to use an unbuffered file, it is first opened or created using open or
creat. It is preferable to use open, which has all the power of creat -
creat should be viewed as obsolescent. These functions require information
about the name of the file on disk, and the mode in which it is to be opened or
created - this is specified using combinations of the macros defined in
f cnt 1. h. If the file is successfully opened, a positive file handle, as described
above, is returned. The C library also keeps a small amount of flags
information about each file opened in this way, for example whether carriage
returns should be removed on input (see the description of text mode versus
binary mode in section 2.17). However, unlike the buffered files (usually
called streams) defined in the header file stdio .h (see section 2.17), no
information is buffered in memory by the C library.

Open unbuffered files should be closed automatically by the operating system
when a program terminates. However, it is good practice to close them
explicitly before terminating, or when they are no longer in use, especially as
the number of available handles is limited.

Although the macro fileno is provided in stdio. h to give the handle
associated with a buffered stream, it is in general unwise to use this handle for
any of the unbuffered type operations defined in io . h, as these routines will
not, for example, take into account any data already in the buffer before
reading data from the disk.

Library header files 10 LIBRARY

2.9 Line A graphics functions <linea.h>

The linea .h header file defines the following "line A" graphics functions:

A000 initialize Line A

A001 set point on screen
A002 get colour of point on screen
A00 3 draw line on screen

A004 draw horizontal line

A005 fill rectangle
A00 6 fill polygon
A00 7 bit block transfer

AO 0 8 text block transfer

AO 0 9 enable mouse cursor

AOOA disable mouse cursor

AOOB change mouse cursor form
AOOC clear sprite
AOOD enable sprite
AOOE copy raster form

These functions provide access to the Atari's high speed graphics routines,
called "Line A" because they make use of unimplemented 68000 instructions
which start with the hexadecimal digit A. More information is available in
Atari technical literature. For many purposes it is better to use the GEM VDI
and AES bindings that are provided with Prospero C, which are more
powerful and more portable, although not quite as fast.

2.10 Localization <locale.h>

The locale . h header file defines functions concerned with localization of

the C run-time environment for a particular nationality. The function
set locale allows the current locale to be changed. However, Prospero C
currently only supports the standard 'C locale. Other locales, if supported,
would affect, for example, which characters were considered to be letters in
the isalpha function, and so on.

LIBRARY 11 Library header files

2.11 Mathematics <math. h>

The math . h header file defines the following mathematical functions:

acos computes arc cosine
as in computes arc sine
atan computes arc tangent
at an 2 computes arc tangent
ceil find greatest integer below
cos computes cosine
cosh computes hyperbolic cosine
exp computes exponentiation
f abs computes absolute value
floor finds least integer above
f mod find remainder of division

f rexp separate exponent
ldexp add exponent
log computes natural logarithm
logl 0 computes base 10 logarithm
modf separate number into integral and fractional parts.
pow computes power of
sin computes sine
s inh computes hyperbolic sine
sqrt computes square root
tan computes tangent
tanh computes hyperbolic tangent

and the macros EDOM, ERANGE and HUGE_VAL. In general, these functions
take one or two parameters of type double, and return a double result. In
the case of errors, they will set errno to either EDOM or ERANGE, as described
in section 3.5.3

" Library header files 12 LIBRARY

2.12 Process control <process.h>

The process . h header file defines the following functions:

sleep pause for a given time
spawn execute program

spawn le execute program with new environment
spawn lp execute program with path search
spawn lpe execute program with new environment and path search
spawnv execute program
spawnve execute program with new environment
spawnvp execute program with path search
spawnvpe execute program with new environment and path search

The sleep function provides a delay for a given number of seconds, and is
preferable to a loop as the delay period is portable. The spawn . . . functions
all execute another program: the different functions make it easier to execute
the program in the desired manner. They also allow passing of parameters.

2.13 Non-local jumps <setjmp.h>

The set jmp . h header file defines the following functions used for non-local
jumps:

set jmp save execution environment
long jmp jump to where execution environment was saved

These functions enable an easy method of returning to a specific point in a
program from anywhere else, usually when an error occurs. They provide a
much easier escape route than returning an error indicator through several
nested functions. See the description of the set jmp and long jmp functions
for more information on how they are used.

2.14 Signal handling <signal.h>

The signal. h header file defines the following signal handling functions:

signal define how signals are to be handled
raise force a signal to occur

The signal function is used to specify what action to take when a signal occurs,
while the raise function is used to cause a specific signal to occur. The header
file also defines some macros suitable for use as parameters to one or other of
these functions:

LIBRARY 13 Library header files

s I G_DFL default signal handling
SIG_ERR error in call to signal
SIG_IGN ignore signal

SIGABRT abnormal termination

SIGFPE erroneous arithmetic operation
SIGILL invalid function image
SIGI NT receipt of an interactive attention signal
SIGSEGV invalid memory access
SIGTERM receipt of termination request

2.15 Variable argument lists <stdarg.h>

The stdarg. h header file defines the following macros, needed for writing
functions that have a variable number of parameters:

vastart called before using variable arguments
va_arg get next variable argument
va_end called after using all variable arguments

These functions are used by functions that require a variable number of
parameters such as printf, and allow the variable parameters to be read. It is
up to the function to determine the type and number of parameters that are
being passed; usually this is done by passing a count or format string in an
earlier parameter, or by making the last parameter zero.

In the following example the function concat will concatenate an arbitrary
number of strings together, placing them in the string given by the first
parameter. The list is terminated by the NULL pointer.

♦include <stdarg.h>
♦include <string.h>

char *concat (char *dest, ...)
{ va_list args;

char *next;

va_start(args, dest);
next = va_arg(args, char *);
while (next != NULL)

{ strcat (dest, next);

next = va_arg(args, char *);
}

va^end(args);
return dest;

}

Library header files 14 LIBRARY

2.16 Standard definitions <stddef.h>

The stddef . h header file defines the following commonly used types and
macros:

long ptrdiff_t
unsigned long int size__t

type of difference of two pointers
type of sizeof

pointer to no object
offset of identifier within struct

see section 2.6

NULL

offsetof

errno

This include file can be used when any of the standard types or macros above
are used - note however that some of them are also defined in other header
files. The of f setof macro can be used to find the offset of a variable within a

structure.

2.17 Stream handling <stdio.h>

The stdio. h header file defines the following standard file handling macros
and functions:

Macros:

EOF

stdin

stdout

stderr

stdaux

stdprn

SEEK_SET

SEEK_CUR
SEEK END

returned by many functions to indicate failure.

standard input stream (default keyboard)
standard output stream (default screen)
standard error stream (default screen)
standard auxiliary stream
standard printer stream

seek mode relative to the beginning of the file
seek mode relative to the current position
seek mode relative to the end of the file

IOFBF full buffered mode

IOLBF line buffered mode

IONBF unbuffered mode

Functions:

clearerr

fcloseall

feof

f error

fclose

fflush

clear stream error

close all the streams

test if stream at end of file
test if stream error indicator set

close a stream

flush a stream

LIBRARY 15 Library header files

fgetc get char from stream
fgetpos get file position
fgets get string from stream
fileno find handle of a stream

flushall flush all the streams

f open open a stream
fprintf print to a file
f put c put char to stream
fputs put string to stream
f read read array from stream
f reopen reopen a stream
fscanf input from a file
fseek set file position
fsetpos set file position
ft ell get file position
fwrite write array to stream
getc get character from stream
getchar get character from keyboard
gets get string from screen
perror print standard error
printf print to the screen
pu t c put char to stream
putchar put char to screen
puts put string to screen
remove remove file

rename rename filename

rewind move to start of file

scanf input from the keyboard
setbuf set up buffer for a stream
setvbuf set buffering mode
sprintf print to a string
sscanf input from a string
tmpfile create temporary file
tmpnam get temporary filename
ungetc unget char from stream
vfprintf print to a file from an argument list
vprint f print to the screen from an argument list
vsprintf print to a string from an argument list

Standard file handling is based on the idea of a stream, or buffered file. A
stream is referenced by an object of type FILE (also declared in stdio . h),
although the user should only ever declare and use pointers to such objects. A
file object contains all the information required by the library regarding a
disk file with which the program is interacting, including information about
the buffering, any buffered data, the GEMDOS file handle, and various flags.

Library header files 16 LIBRARY

Stream handling functions are sometimes referred to as buffered file handling
operations in this manual, to distinguish them from the unbuffered file
handling operations defined in io.h. However, it is possible to specify
whether the files are to be buffered using the setvbuf and setbuf functions.

An important concept which affects the use of both streams and unbuffered
files is that of text mode versus binary mode. Traditionally, C programs
(particularly in the UNIX environment where C originated) assumed that lines
of text in files were terminated by a single new-line character, whereas some
operating systems, particularly on micros, place a carriage-return before the
line-feed which terminates the line. In order to allow C programs to work
under either system, the concept of text mode was invented. In text mode, lines
of text are translated on input from the operating system's normal format (i.e.,
terminated by carriage-return/line-feed on GEMDOS) to the C standard
format (i.e., terminated by line-feed only), and translated the other way on
output.

When reading in binary data from a file, such considerations do not apply -
indeed it would be unfortunate if all bytes whose value was 13 (the ASCII value
of carriage-return) were skipped when reading a series of integers. Thus files
which do not contain lines of text must be opened in binary mode.

Five FILE objects are predefined in Prospero C to refer to the standard input,
output, error, auxiliary and printer handles, and their addresses are defined as
the macros stdin to stdprn, listed above. Note that on the Atari there is no
standard error handle, so that in fact the macro stderr also refers to
stdout.

To use any file other than the predefined ones, a pointer to a FILE object is
obtained using f open. Information can then be read from or written to the file
as appropriate. It is good practice to close all files when they are no longer in
use, although Prospero C will flush and close all open streams at normal
program termination.

I

LIBRARY 17 Library header files

2.18 Standard utilities <stdlib.h>

The stdlib .h include file defines a range of general utility functions, as
follows:

abort abort the current process
abs absolute value

atexit exit trap
atof convert string to float
atoi convert string to int
atol convert string to long
bsearch binary search
calloc allocate and clear memory
div find quotient and remainder of division
ecvt convert floating point to string
exit terminate with clean up
_exit terminate quickly
f cvt convert floating point to string
free free allocated memory
getenv get environment variable
itoa convert int to string
labs find absolute value of long int
ldiv quotient and remainder of long int division
ltoa convert long int to string
malloc allocate memory
qsort sort a data array
rand generate a random number
realloc reallocate memory
srand set seed for rand function

strtod convert string to double
strtol convert String to long int
strtoul convert string to unsigned long int
swab swap bytes
system call system command processor
ultoa convert unsigned long int to String

These functions cover a wide range of assorted uses, including program
termination, memory allocation, array sorting and searching, integer
mathematical functions and functions to convert arithmetic types to and from
strings. See the appropriate part of section 3 for details

^Library header files 18 LIBRARY

2.19 String handling <string.h>

The string.h header file defines the following string and memory block
manipulation functions:

memccpy copies memory up to a given character
memchr find a character in a memory block
memcmp compare two memory blocks
memcpy copy a memory block
memicmp compare two blocks, disregarding case
memmove copy a memory block intelligently
memset set a memory block to a value
st rcat concatenate two strings
strchr find character in string
st rcmp compare two strings
strcoll transform string for collating
strcpy copy one string to another
st re spn measure span of characters not in set
st rdup duplicate a string
strerror map error number to string
striemp compare strings, case insensitive
strlen measure length of string
st rlwr convert string to lower case
strncat concatenate two strings, maximum length
strnemp compare strings, length limited
strncpy copy one string to another, length limited
strniemp compare two strings, ignoring case, max length
strnset set string to value, max length
strpbrk find break character in string
strrchr find character not in string
strrev reverse string
s t r s et set string to value
s t r s pn measure span of chars in set
strstr locate occurrence of sub-string
strtok get a token
st rupr convert string to upper case

LIBRARY 19 Library header files

Functions whose names start str. . . deal with null-terminated strings; those
starting strn . . . deal with null-terminated strings with a maximum length,
and those starting mem deal with blocks of memory, with a size specified rather
than a delimiting character. These functions provide most of the string
handling functions that will normally be required, including concatenation and
several routines that search the string for occurrence or non-occurrence of one
or several characters. Those starting mem. . . are memory functions
performing basic move and search functions on areas of memory.

It is up to the program to ensure that any pointers passed to receive results
point to sufficiently large strings - no error checking is possible, and errors
may result in program crashes.

If you have difficulty in remembering the order of the parameters in a
function such as strcpy, remember that the first parameter is always the
destination, as in an assignment expression si = s2.

e.g.,

♦include <string.h>

main ()

{ char buffer[81]; /* enough space for chars */

puts("Enter a string");
scanf ("%80s", buffer);

printf("forwards...\n%s\n", buffer);
strrev(buffer) ;

printf ("backwards. ..\n%s\n", buffer);
strrev(buffer); /* back to normal */

Library header files 20 LIBRARY

2.20 Date and time <time.h>

The time.h header file defines the following date and time manipulation
functions:

asctime convert time to string
clock elapsed timer
ct ime convert time value to string
di f f t ime computes the difference between two times
gmt ime unpack Greenwich mean time
localtime unpack local time
mkt ime convert broken down time to calender time

strftime general time string
time get time
tzset set time zone

There are two formats for storing the time: the first is the internal GEMDOS
format, corresponding to the type time_t; the second is a broken down
structure, defined as follows:

typedef struct tm {int tm sec; seconds (0-59) 1
int tm min; minutes (0-59)
int tm hour; hours (0-23)

1int tm mday; day of month (1-31)
int tm mon; month (0-11)
int tm year; year relative to 1900
int tm wday; day of week (Sun = 0) !int tm yday; day of year (0-365)
int tm isdst;

};

daylight saving time flag

The strftime function can generate a string describing the date and time in a
wide variety of formats.

I

I

I

I

I

1

I

I

I

I

I

LIBRARY 21 Introduction

3 LIBRARY FUNCTIONS AND MACROS

3.1 Introduction

The remainder of this volume details all the library functions defined in
Prospero C, apart from the AES and VDI bindings, which are described in
volumes III and IV.

3.2 Use of library functions

Normally when using the library functions, all the appropriate header files
should be included at the start of the program. Failing to do so will not always
result in compile-time errors, as in C it is not an error to use a function which
was not previously declared. However, there are several disadvantages which
may occur if a function is used without including the header file containing its
prototype.

Firstly, any function which is called which was not previously declared will be
assumed to return an int. If this is not in fact the case, the value returned will
not be correct, and the program will behave unpredictably. If you specify the S
option when compiling a program, such use of an undeclared function will
generate a warning.

Secondly, if a function is called outside the scope of a function prototype, the
compiler will not be able to check that the parameters you specify match in
type and number the parameters expected by the function, and will only be able
to guess at the conversions (if any) it should perform on the parameters before
passing them. The default argument promotions will be performed, so that all
float values are converted to double, and all char values to int. No
library functions in fact expect parameters of type char or float, precisely
because of the default conversions, but a function whose parameter should be
long int would be passed an int if the argument was not explicitly stated to
be long -this would lead to an unpredictable value being used. Particular
care is needed with functions such as malloc, which traditionally has accepted
an argument of type int, but in the draft ANSI standard expects an argument
of type size_t, which is equivalent to long. A call such as malloc (4) will
not work if <st dlib. h> is not included.

Thirdly, some functions are in fact defined as macros in the header files.
Although the library also contains a true function corresponding to each such
macro, which will be used if the header is not included, this is likely to result in
larger and/or slower programs.

Introduction 22 LIBRARY

3.3 Character arguments

Many functions that might be expected to use char for parameters in fact use
int. The reason for this lies in the default argument promotions - if a function
had a parameter of type char, it could never be called in the absence of a
function prototype, as all values of integer types narrower than int would be
extended to type int before being passed. Declaring the parameter as being of
type int in the prototype ensures that the argument is promoted in the same
way whether or not the function prototype is present. If a char is passed to a
function that is defined in this way, then it is converted to an int in the usual
way, as described in volume I.

Note that the compiler option U (char is unsigned) does not affect the way in
which library functions treat char values. For functions which operate on
character values extended up to int before being passed, as described above,
or return values of type int in the expectation that they will be truncated back
to char, the way in which the extending and truncating is done will be
determined by the setting of the U option in the program calling them.
However, many of the string and memory comparison functions are not
affected in this way, and always behave as if char was unsigned, as required
by the C standard.

3.4 Functions and macros

Some functions in the library are defined as macros, rather than functions. If
the header file is not included, then the macro will not be defined and the
function will be called. It is also possible to undefine a macro using ♦undef.

Again the function will be called. If a function is being assigned to a function
pointer variable, or passed as a parameter, the function name will not be
followed by a left parenthesis, and therefore the macro will not be invoked,
and again it will be the true function that is referred to. For the same reason, if
the function name in a function call is enclosed in brackets, this will ensure that
a true function rather than a macro is invoked.

e.g. toascii can be defined as follows :-

int toascii(int c)
{ return c & 0x7f; }

or

♦define toascii (c) ((c) & 0x7f)

LIBRARY 23 Introduction

In the program segment :-

char a = toascii(193);

♦include <ctype.h>

char b = toascii(193);

char c = (toascii) (193);

♦undef toascii

char d = toascii(193);

the function will be called in the first, third and fourth use of toascii, and
the macro definition will be used in the second. The individual function
descriptions indicate when the header file defines a macro, and draw
attention to the use of ♦include and ♦undef.

3.5 Handling errors

In some cases a function may be requested to do something that it cannot do.
This may be because the parameters are unsuitable (e.g., sqrt (-1)), or
because of other factors (e.g., running out of memory or disk failures).
When an error occurs the function needs to indicate that a error occurs.

There are two standard ways of achieving this.

3.5.1 Function result

Some functions indicate an error by returning a value that could not result if
the function was successful. Often this is -1, or NULL for functions which
return pointers. For example, open returns -1 if it cannot open a file, and
malloc returns NULL when there is not enough memory available.

3.5.2 The macro errno

The macro errno expands to a modifiable lvalue of type int (that is, it
behaves as if it was declared as a variable of type extern int). Its value is
initially zero when the program starts up, but many functions will set it to a
positive error code upon detecting an error. No library function resets
errno to zero, so that a program can call several functions, and then look at
errno once at the end to see whether an error had occurred. The program
would normally then reset errno to zero when it had corrected the error.
The header file <errno.h> defines the macro errno and macros

representing all possible values it may take from calls to the library
functions. See the functions strerror andperror for ways of converting
an error code into an error message.

Introduction 24 LIBRARY

When a function indicates an error by setting errno, it must still return a
value. This value may by itself indicate that an error has occurred, as above, or
it may be a value that cannot be distinguished from a valid function result
except by examining errno.

3.5.3 Range and domain errors

The trigonometric and transcendental functions defined in the <math.h>
header file canprovoke three sorts of error. Firstly, the argument given can be
a value where the mathematical function is not defined. This is known as a
domain error, and will cause the value 0.0 to be returned, and errno to be set
to the value of the macro EDOM.

e.g.,

asin(10.0)

Secondly, the argument can be such that the result, while mathematically
defined, cannot be represented as a double, as its magnitude is too great. This
is known as a range error, and will cause the value ±HUGE_VAL (depending on
the sign of the true result) to be returned, and errno to be set to the value of
the macro ERANGE.

e.g.,
exp(le5)

The third class of errors occur for trigonometric functions, when the
argument is so large that some or all significance is lost while reducing the
argument to the range 0 to 27C prior to calculating the result. The C standard
mandates that such errors should not be reported.

e.g.,

sin (le5)

LIBRARY 25 Introduction

3.6 Library function descriptions

The functions are arranged in alphabetical order, with each function described
in the format given below. Occasionally several functions are described
together, especially where the functions can only sensibly be used together, or
if they differ only very slightly in purpose. The layout for each function is as
follows :-

function name

A brief description of the function.

Definition

Which header file needs to be included, and the prototype of the function as it
appears in that header file.

Purpose

A detailed description of the function and what the parameters (if any) mean.

Returns

The value returned by the function, and how errors are indicated: usually via
the value returned, or by setting errno appropriately (see above).

Related Functions

A list of other functions that either perform a similar task, or are likely to be
used in association with this function.

Example

A simple example illustrating how the function is used.
These examples are not necessarily complete programs -

for instance few of them define main.

aOOCaOOe 26 LIBRARY

aOOO..aOOe

The aOOn functions call the Atari "Line A" high speed graphics routines. They
are not part of the draft ANSI standard.

Definition

There are 14 "Line A" functions. In the definition n may be any of 0-9, A-E .

♦include <linea.h>

long int aOOn (struct RegRec *registers);

Purpose

The functions aOOO to aOOe cause entry to the Atari's "Line A" graphics
routines. These are fast graphic primitives which are executed using some of
the MC68000 processor's unimplemented op-codes (the op-codes used all start
with the hex digit 'A', hence the name). The interface to these routines was
designed with the assembler programmer in mind, and therefore arguments
are passed in registers rather than on the stack; the interface is also rather
complicated, and is not particularly consistent between different routines. The
procedures available are as described below; they are described in further
detail in technical information available from Atari, or in various reference
books on the Atari ST.

Procedure Purpose

aOOO Initialize Line A

aOOl Set point on screen
a002 Get colour of point on screen
a003 Draw line on screen

a004 Draw horizontal line

a005 Fill rectangle
a006 Fill polygon
a007 Bit block transfer

a008 Text block transfer

a009 Enable mouse cursor

aOOa Disable mouse cursor

aOOb Change mouse cursor form
aOOc Clear sprite
aOOd Enable sprite
aOOe Copy raster form

I LIBRARY 27 aO00..aO0e

The data for the machine registers is passed in registers which has type:-

struct RegRec { long int dO,dl,d2,d3,d4,d5,d6,d7;
void *a0,*al,*a2,*a3,*a4,*a5,*a6; };

I
and refers to the 68000 registers. These values are copied into the machine
registers before the "Line A" op-code is issued and copied back again
afterwards.

Returns

The a00« functions return the register dO after calling the "Line A" routine.

I

I

I

I

I

Related functions

gemdos, xbios, bios, VDI functions

Example

♦include <linea.h>

struct RegRec registers;

/* get a pointer to the linea variables */
void *lineaptr = aOOO (®isters);

abort 28 LIBRARY

abort
Definition

♦include <stdlib.h>

void abort (void);

Purpose

This function causes abnormal program termination. Functions registered
with at ex it are not called, open streams are not flushed or closed, and
temporary files created with the tmpf ile function are not removed. The
signal SIGABRT is raised by calling the function raise (SIGABRT), and if
this returns, the program terminates with status EXIT_FAILURE.

Returns

The abort function never returns to its caller.

Related functions

exit, exit, raise

Example

♦include <stdlib.h>

♦include <stdio.h>

♦include <string.h>

main ()

{ FILE *data = fopen("data.dat", "r");

if (data == NULL)

{ fprintf (stderr, "Can't open data file: %s \n"
strerror(errno));

abort();

I

I

I

I

I

LIBRARY 29 abs

Definition

♦include <stdlib.h>

int abs (int j) ;

abs

Purpose

This function returns the absolute value of the integer j.

Returns

The abs function returns the absolute value of j. Note that the value of
abs (-32768) cannot be expressed as a two-byte integer, and abs will return
-32768. The value of errno will not be affected in this case, however.

Related functions

labs, fabs

Example

♦include <stdlib.h>

main ()

{ int i;

for (i = -5; i < 5; i++)
printf("%d\n", abs(i));

}

produces as output

5

4

3

2

1

0

1

2

3

4

access 30 LIBRARY

access

The access function checks whether a given file can be accessed. It is not
part of the draft ANSI standard.

Definition

♦include <io.h>

int access (const char *path, int mode);

Purpose

This function determines whether the string pointed to by path is the name of
a valid file or directory which can be accessed with the given mode.

Mode Access requirement

0 Check for existence only
2 Check for write access

4 Check for read access

6 Check for read and write access

Under GEMDOS, all files have read permission, so modes 2 and 6 are
equivalent, as are modes 0 and 4.

Returns

The access function returns zero if the file or directory can be accessed with
the given mode. Otherwise, -1 is returned, and errno will be set to either
ENOENT, if the file does not exist, or EACCES, if it does not have the specified
access permission.

Related functions

chmod, open

Example

♦include <io.h>

if (access("DATA.IN", 0))

{ puts("Can't find DATA.IN - terminating ");
exit(1);

I
~7 LIBRARY 31 acos

acos

The acos function returns the arc cosine of a value.

Definition

♦include <math.h>

double acos (double x);

Purpose

This function returns the principal value of the arc cosine of x. If x is not in the
range -1 <= x <= 1, a domain error occurs. In this case, errno will be
set to EDOM, and the value 0.0 will be returned.

Returns

The acos function returns the arc cosine of x, expressed in radians, in the
range 0 to jr..

Related functions

asin, atan, atan2

Example

♦include <math.h>

double x = 0.0;

printf ("pi 12= %f\n", acos (x)

asctime 32 LIBRARY

asctime

The asctime function returns a string representing the given date and time.

Definition

♦include <time.h>

char *asctime (const struct tm *timeptr);

Purpose

This function returns a pointer to a string describing the time represented by
the structure pointed to by timeptr. This string always consists of 26
characters, including terminating new-line and null characters, laid out as in
the following example :-

Wed Apr 14 11:04:22 1965\n\0

All fields have constant width.

Returns

The asctime function returns a pointer to the string. The space occupied by
the string will be overwritten by the next call to asctime or ctime.

Related functions

strftime, mktime, time, ctime

Example

♦include <time.h>

main ()

{ time_t now = time(NULL);

printf ("It is now %s\n", asctime(localtime(Snow)));

I

~7 LIBRARY 33

asm

The as in function returns the arc sine of a value.

Definition

♦include <math.h>

double as in (double x) ;

asm

Purpose

This function returns the principal value of the arc sine of x. If x is not in the
range -1 <= x <= 1, a domain error occurs. In this case, errno will be
set to EDOM, and the value 0.0 will be returned.

Returns

The as in function returns the arc sine of x, expressed in radians, in the range
-re/2 to jc/2.

Related functions

acos, atan, atan2

Example

♦include <math.h>

double x = 0.5;

printf (" pi / 6 = %f\n", asin (x)

assert 34 LIBRARY

assert
The assert macro is used for program verification.

Definition

♦include <assert.h>

void assert(int expression);

Purpose

The assert macro is used in a program under development to verify that a
particular condition which should be true at a particular point in the code is in
fact true. If the value of expression is zero, a diagnostic message is output
to the stderr stream, and execution is terminated by calling the abort
function.

The diagnostic message is of the form

Assertion <exp> failed: file <filename>, line <lineno>

where <exp> is the expression which failed, and <filename> and <lineno> are
the values of the standard FILE and LINE macros respectively.

Although the checks made by the assert macro are extremely useful when a
program is under development or being debugged, they would add a
significant amount to the size of a final program. In order to suppress the
generation of these checks, the macro NDEBUG can be defined before including
assert.h. In this case, the assert macro is defined as (void) 0, so that
no code will be generated for any invocation of assert.

Returns

There is no return value.

Example

♦include <assert.h>

/* nextchar should never be NULL here */

assert (nextchar != NULL);

while (*nextchar && *nextchar != 's')

nextchar++;

I

I

I

I

LIBRARY 35 atan

atan

The atan function returns the arc tangent of a value.

Definition

♦include <math.h>

double atan (double x);

Purpose

This function returns the principal value of the arc tangent of x.

Returns

The atan function returns the arc tangent of x, expressed in radians, in the
range -nil to nil.

Related functions

acos, asin, atan2

Example

♦include <math.h>

I

I

I

I

I

I

double x = 1.0;

printf (" pi / 4 = %f\n", atan (x));

atan2 36 LIBRARY

atan2
The atan2 function returns the arc tangent of the quotient of two values.

Definition

♦include <math.h>

double atan2 (double y, double x) ,-

Purpose

This function returns the arc tangent of y/x. If both x and y are zero, a domain
error occurs. In this case, errno will be set to EDOM, and the value 0.0 will be
returned.

Returns

The at an 2 function returns the arc tangent of y/x, expressed in radians, in the
range -jr. to n. The signs of both arguments determine the quadrant of the
return value.

Related functions

acos, asin, atan

Example

♦include <math.h>

double x = -1.0, y = 1.0;

printf (" - pi / 4 = %f\n", atan2 (y, x)

LIBRARY 37 atexit

atexit
i
j The atexit function causes a specified function to be executed at program

exit.

I

I

I

I

I

I

I

I

I

I

Definition

♦include <stdlib.h>

int atexit (void (*func)(void));

Purpose

This function registers the function whose address is given by f unc, causing it
to be executed without arguments when normal program termination occurs.
Functions registered in this way are called in reverse order of their
registration, after execution of the exit function, or after the main function
returns. At this point, all objects created with automatic storage duration
during program execution are no longer in scope, so should not be accessed.
However, open streams have not yet been closed, and temporary files have not
been removed.

If program execution is terminated abnormally, by executing the abort or
_exit functions, any functions registered using atexit will not be executed.

No more than 32 functions can be registered.

Returns

The atexit function returns zero if the registration succeeds. If too many
functions have been registered, a non-zero result is returned.

Related functions

exit, exit, abort

atexit 38 LIBRARY

Example

♦include <stdlib.h>

void tidy_up(void)
{ /* Clean up various matters */

printf ("Done\n");

void sign_off(vo id)
{ /* Print termination message */

printf("Session terminatedXn");

main ()

{

atexit(tidy_up);
atexit(sign_off);

}

results in the following output :-

Session terminated

Done

I

J
i

I

I

LIBRARY 39 atof

atof

The atof function converts a string to a double.

Definition

♦include <stdlib.h>

double atof(const char *nptr);

Purpose

This function converts the initial portion of the string pointed to by nptr,
which contains the decimal representation of an optionally signed floating
point value to the corresponding double value.

This function has been superseded by strtod, but is provided for
compatibility with older code. It is equivalent to the function call

strtod(nptr, NULL);

Returns

I

I

I

I

I

The atof function returns the converted value, as a double. If the value
represented by the string would cause overflow, the result is undefined. If the
initial portion of the string (after skipping white space) does not correspond to
a valid representation of a floating point value, zero is returned.

Related functions

atol, strtol, sscanf

Example

♦include <stdlib.h>

double x;

x = atof ("3.141592653589793");

printf(" pi = %f\n", x) ;

' a±o\ 40 LIBRARY

atoi

The atoi function converts a string to an integer.

Definition

♦include <stdlib.h>

int atoi(const char *nptr);

Purpose

This function converts the initial portion of the string pointed to by nptr,
which contains the decimal representation of an optionally signed integer to the
corresponding integer value.

This function has been superseded by strtol, but is provided for
compatibility with older code. It is equivalent (except on erroneous behavior)
to the function call

(int) strtol(nptr, NULL, 10);

Returns

The atoi function returns the converted value, as an int. If the value
represented by the string is outside the range which can be represented as an
int, the result will be undefined. If the first non-whitespace character in the
string is not a digit or a sign character followed by a digit, zero is returned.

Related functions

atoi, strtol, sscanf

Example

♦include <stdlib.h>

int i;

char *string = "12345"

i = atoi (string) ;

printf ("String has value %d\n", i);

I

I

I

I

I

I

LIBRARY 41 atoi

atoi

The atoi function converts a string to a long integer.

Definition

♦include <stdlib.h>

long int atoi (const char *nptr)

Purpose

This function converts the initial portion of the string pointed to by nptr,
which contains the decimal representation of an optionally signed integer to the
corresponding long integer value.

This function has been superseded by strtol, but is provided for
compatibility with older code. It is equivalent to the function call

strtol(nptr, NULL, 10);

Returns

The atoi function returns the converted value, as a long int. If the value
represented by the string is outside the range which can be represented as a
long integer, errno will be set to ERANGE, and an undefined result will be
returned. If the first non-whitespace character in the string is not a digit or a
sign character followed by a digit, zero is returned.

Related functions

atoi, strtol, sscanf

Example

♦include <stdlib.h>

long int 1;

1 = atoi ("1234567890");

bios 42 LIBRARY

bios

The bios function calls an Atari BIOS function. It is not part of the draft
ANSI standard.

Definition

♦include <dos.h>

long int bios (int funcno,

Purpose

This function is used to make a call to one of the Atari's BIOS functions.

The funcno parameter specifies which BIOS function is required. Other
parameters are passed where appropriate - their number, type, and purpose
depend on the BIOS function requested. See Atari technical information for
further details.

Returns

The bios function returns the value returned in dO by the corresponding
BIOS function.

Related functions

gemdos, xj^^^o

Example

♦include <dos.h>

/* Function to return the next key to be pressed */
int getch ()

{ return (bios (2,2) & Oxff)

}

I

I

I"

I

I

I

I

1

I

I

I

I

I

I

I

LIBRARY 43 bsearch

bsearch

The bsearch function searches a sorted array for a particular item.

Definition

♦include <stdlib.h>

void *bsearch(const void *key, const void *base,
size_t nmemb, size_t size,
int (*compar) (const void*, const void*)

Purpose

This function searches the array whose base address is base, and which
contains nmemb objects, each of size size bytes, for an object which compares
equal to the object pointed to by key, using the comparison function compar.

The comparison function compar should return an integer less than, equal to
or greater than zero, according to whether its first argument should be
considered less than, equal to or greater than its second, and the objects in the
array should be in ascending order as defined by this comparison function. The
object is located using a binary search algorithm, which relies upon the objects
being in order.

Returns

The bsearch function returns a pointer to an object which matches key, it
one can be found, otherwise NULL. If more than one object in the array would
match key, any one of them may be returned.

Related functions

qsort

bsearch 44 LIBRARY

Example

♦include <stdlib.h>

♦include <string.h>

char *colors[] = {"amber", "green", "red" };
/* Note the alphabetic order */

int mstrcmp(const void * a,const void * b)
{ return strcmp (* (char **) a,* (char **) b);

}

main ()

{ char ** color;

char *key = "green";

color = bsearch (Skey, colors,
3, sizeof (char *), mstrcmp);

printf ("We have found %s\n", color);

}

I

I

I

I

I

I

i

LIBRARY 45 calloc

calloc

The calloc function allocates and clears an area of memory.

Definition

♦include <stdlib.h>

void *calloc(size t nmemb, size t size);

Purpose

This function allocates and clears to zero enough memory for an array of
nmemb objects, each of size size bytes. The memory can be released using
free when it is no longer required. The memory will always start on an even
address.

Returns

The calloc function returns the address of the start of the allocated memory,
or NULL if insufficient memory is available or zero bytes were requested.

Related functions

free, malloc, realloc

Example

♦include <stdlib.h>

main ()

{ int *a;

/* Obtain space for 100 integers, and set them
all to zero */

a = (int *) calloc (sizeof (int), 100);
if (a == NULL)

abort () ;

ceil 46 LIBRARY

ceil

The ceil function rounds a double value up to the nearest whole value.

Definition

♦include <math.h>

double ceil(double x);

Purpose

This function computes the smallest integral value which is not less than its
argument x.

Returns

The ceil function returns the double representation of the integer. There ,
are no error cases.

Related functions

I

floor

Example

♦include <math.h>

double truncate(double x) /* truncate towards zero */
{ if (x > 0.0)

return floor (x) ;

else

return ceil (x) ;

}

I

i

i

i

i

i

i

i

i

i

i

i

LIBRARY 47 ceil

chdir

The chdir function sets the current working directory. It is not part of the
draft ANSI standard.

Definition

♦include <direct.h>

int chdir (const char *pathname);

Purpose

This function sets the default directory to be that specified by pathname. This
may be either absolute or relative to the current default directory. If the
pathname starts with a drive specifier (a drive letter followed by a colon) the
current drive will also be changed. Subsequent references to file names will be
interpreted relative to the new default directory.

Note that to include a backslash character in a string literal, two backslashes
must be used, as the backslash character is used to introduce escape sequences.
A forward slash may be used in place of the backslash character in pathname
- these will be interpreted as if they were backslashes by the chdir function.

Returns

The chdir function returns zero if the operation is successful. If the specified
pathname does not exist, -1 is returned, and errno will be set to ENOENT. It is
not an error to select a directory which is already current.

Related functions

mkdir, rmdir

Example

♦include <direct.h>

chdir ("\\"); /* Make root directory current */
chdir (".."); /* Make parent directory current */
chdir ("A:/"); /* Make root of drive A current */

chmod 48 LIBRARY

chmod

The chmod function changes the access mode of a file. This function is not part
of the draft ANSI standard.

Definition

♦include <io.h>

int chmod (const char *path, int attribute);

Purpose

The chmod function can be used to change the write protection of a file. Thus a
file can be created, information written to it, and then protected. (This will
only work with the soft write protect: if the write protect tab on the disk is
open, then the disk cannot be written to).

The parameter attribute can be either S_IWRITE, to allow normal access
(i.e. read and write), or S_IREAD, to make the file read only. S_IREAD and
S_IWRITE are both defined in the header file f cntl. h.

Returns

The chmod function returns the new attribute, or a negative number if an
error occurs; in this case errno is set.

Related functions

access, findfirst

Example

♦include <io.h>

if (access(filename,2) == -1)

if (errno == EACCES) /* write protected */
{ chmod(filename, S_IWRITE); /* allow write */

}

I

LIBRARY 49 clearer r

clearerr

The clearerr function clears a stream's error and end-of-file indicators.

Definition

I

♦include <stdio.h>

void clearerr(FILE *stream);

Purpose

I This function clears the end of file and error indicators of the specified file
stream. These are also cleared when the file is opened (using fopen or

, f reopen) or rewound (using rewind), but no other file operations clear the
I error flag.

This is defined as a macro in stdio . h, but will be called as a function if
stdio. h is not ♦included,or clearerr is undefined using ♦undef.

I

I

I
Example

♦include <stdio.h>

FILE * stream;

I

I

Returns

The clearerr function returns no value.

Related functions

feof, ferror, perror

if (ferror(stream))

{ /* Correct the error */

clearerr(stream);

Clock 50 LIBRARY

clock

The clock function returns how long the program has been executing.

Definition

♦include <time.h>

clock t clock(void) ;

Purpose

This function returns the number of clock ticks which have occurred since the
start of program execution.The number of clock ticks per second is defined by
the macro CLK TCK.

Returns

The number of clock ticks is returned. For maximum portability, a program
should check whether the value (clockt) -1 has been returned, indicating
that this information is not available, although this will never be the case in
Prospero C.

Related functions

time, difftime

Example

♦include <time.h>

main ()

{ int i, test_t, empty_t;
clock_t start, end;

start = clock();

for (i = 0; i < 1000; i++)
test () ;

end = clock();

test_t = (end - start)/CLKJTCK;
start = clock ();

for (i =0; i < 1000; i++);
end = clock();

empty_t = (end - start)/CLKJTCK;
printf("1000 calls of test() took %d seconds.\n",

test_t - empty t);

I

I

LIBRARY 51 close

close

The close function closes an unbuffered file. This function is not part of the
draft ANSI standard.

Definition

[♦include <io.h>

int close(int handle);

I
This function closes the file specified by handle. It is used for unbuffered files,
rather than for streams (i.e. files opened using open or creat rather than
fopen, and referred to by a handle rather than a FILE * pointer). The value
of handle should be that returned by the call of open or creat when the file
was opened.

I

I

I

I

I

1

I

Purpose

Returns

The close function returns zero if the file is successfully closed, otherwise
-1. In the case of error, errno will be set to indicate the error. Normally the
error code will be EBADF, indicating an invalid file handle.

Related functions

open, creat, dup, dup2

Example

♦include <io.h>

main()

{ int handle = open ("scrndump", 0_WRONLY);
if (handle != -1)

{ /* Output a few things to the file */

close (handle);

}

)

cos 52 LIBRARY

COS

The cos function computes the cosine of a value.

Definition

♦include <math.h>

double cos(double x);

Purpose

This function computes the cosine of x (in radians). If the value of x is large,
the result may lose some or all significance (returning zero). This will not
cause errno to be set.

Returns

The cos functionreturns the cosine, in the range -1.0 to +1.0.

Related functions

sin, tan

Example

♦include <math.h>

printf (" cos(pi) = %f\n", cos(3.1415926));

I

I

I

LIBRARY 53 cosh

cosh

The cosh function computes the hyperbolic cosine of a value.

Definition

♦include <math.h>

double cosh(double x);

Purpose

This function computes the hyperbolic cosine of x.

Returns

The cosh function returns the hyperbolic cosine. If the value of x is too large
for the result to be represented, a range error occurs. In this case, errno will
be set to the value erange, and the value HUGE VAL will be returned.

Related functions

sinh, tanh

Example

♦include <math.h>

printf ("cosh (1) = %f\n", cosh (1.0))

creat 54 LIBRARY

creat

The creat function creates a new unbuffered file. This function is not part of
the draft ANSI standard.

Definition

♦include <io.h>

int creat (const char *filename, int pmode);

Purpose

This function creates a new unbuffered file with name filename, and access
permission specified by pmode. If the given file already exists, it is truncated
to zero length, and the access permission remains unchanged.

The values for the access permission are obtained by combining (using the
bitwise OR operator |) one ore both of the following constants (defined in the
fcntl.h header file):- '

S_IWRITE File can be written •
S_ I READ File can be read

Under GEMDOS, write permission always implies read permission, so that
S_IWRITE and S_IWRITE I S_IREAD are equivalent.

Files opened using creat are always in binary mode. The open function can
be used to perform a similar task, but with the option of opening a file in text i
(translated) mode, by specifying the o_CREAT and o_trunc flags in the
access parameter. It is recommended that open is used for new code - the
creat function is provided for compatibility with existing code only.

Returns

The creat function returns the handle of the file, which is used to refer to the
file in subsequent read, write, seek, dup, dup2 or close function calls.
If an error occurs, -1 is returned, and errno will be set.

Related functions

open, close, read, write, seek, dup, dup2

I

I

I

I

LIBRARY 55 creat

Example

♦include <io.h>

main ()

{ int handle = creat ("temp.$$$", S_IWRITE | S_IREAD);

/* use the temporary file */

close (handle);

remove ("temp.$$$");

}

ctime 56 LIBRARY

ctime

The ctime function converts a date and time to a characterstring.

Definition

♦include <time.h>

char *ctime(const time t *timer);

Purpose

This function converts the calendar time pointed to by timer (treated as local
time) into a string. It is equivalent to

asctime (localtime (timer))

Returns

The ct ime function returns the address of the string. This always contains 26
characters, in the same format as returned by the asctime function. The
buffer containing the string will be overwritten by the next call of a set ime
or ctime.

Related functions

asctime, localtime, time

Example

♦include <time.h>

main ()

{ time_t now = time(NULL);

printf ("It is now %s\n", ctime (Snow))

}

I

I

!

I
~~7 LIBRARY 57 difftime

difftime

The difftime function calculates the difference between two calendar times.

Definition

I

I

I

I

♦include <time.h>

double difftime (time t timel, time t time2)

Purpose

This function calculates the difference (in seconds) between the two calendar
times t ime2 - t ime 1. The type t ime_t (defined in t ime . h), is a
compressed form containing the year, month, day, hour, minute and second, so
that simply subtracting two time_t values would not give a meaningful
result.

Returns

CThe difftime function returns the elapsed number of seconds between
timel and time2, expressed as a double. If the value is negative, time2

I

I

I

I

I

I

[

was earlier than t ime 1.

Related functions

time, clock

Example

♦include <time.h>

main ()

{ time_t start, end;

time(Sstart);

test () ;

time (Send) ;

/* Note: This could be achieved more efficiently
using clock () */

printf ("test() took %g seconds.\n",
difftime (start, end));

difftime 58 LIBRARY

div
The div function computes the quotient and remainder of an integer division.

Definition

♦include <stdlib.h>

div t div(int numer, int denom);

Purpose

This function calculates the quotient and remainder of the division of numer
by denom. The sign of the remainder is always the same as the sign of the
quotient (unless the remainder is zero). If denom is zero, or numer is
MIN INT and denom is —1, the result is undefined.

Returns

The div function returns a structure with two integer fields, quot and rem.
The type div_t is defined in stdlib .h.

Related functions

ldiv

Example

♦include <stdlib.h>

div_t result;
int hours, minutes;

result = div (minutes, 60)

hours = result.quot;
minutes = result.rem;

I
This function finds which disk drives are connected to the computer (on a
single disk Atari it will still find drives A and B as these both exist logically).

Returns

This function returns a bitmap where a 1 indicates a drive is present and a 0
indicates it isn't. Drive A is bit 0, drive B is bit 1 and so on.

I

I

I

I

I

I

I

I

LIBRARY 59 drivemap

drivemap

The drivemap function finds which drives are available. It is not part of the
draft ANSI standard.

Definition

♦include <direct.h>

unsigned int drivemap(void)

Purpose

Related functions

getdfs, getdisk, setdisk

Example

♦include <direct.h>

int i;

unsigned int map = drivemap();

for (i=0;i<16;i++)

if (map & (1 « i))
printf ("Drive %c is available\n", i + 'A');

dup 60 LIBRARY

dup

The dup function duplicates a file handle for an unbuffered file. This function
is not part of the draft ANSI standard.

Definition

♦include <io.h>

int dup (int handle);

Purpose

This function returns a new file handle which refers to the same file as
specified by handle, which must be one of the standard handles. Subsequent
operations on the file can use either handle.

Returns

The dup function returns the new file handle. If an error occurs, -1 is
returned, and errno is set to indicate the type of error.

Related functions

dup2, fileno, open, creat

Example

♦include <io.h>

int screen_handle, printer_handle ;
int handle, hard__copy;

if (hard_copy)
handle = dup (printer_handle);

else

handle = dup (screen_handle);
/* output via handle will go to screen unless

hardcopy is requested */

I

y LIBRARY 61 dup2

dup2

The dup2 function duplicates a file handle for an unbuffered file. This
function is not part of the draft ANSI standard.

Definition

♦include <io.h>

int dup2 (int handle, int new_handle)

Purpose

This function forces the handle new handle to refer to the same file as that

. specified by handle, which must be one of the standard handles. If
new_handle already refers to an open file, it will be closed first. Subsequent
operations on the file can use either handle.

I Returns

CThe dup2 function returns the new file handle. If an error occurs, -1 is
returned, and errno is set to indicate the type of error which. Otherwise, the
new file handle will be new handle.

I

[

I

I

I

I

[

Related functions

dup, fileno, open, creat

Example

♦include <io.h>

int screen_handle, printer_handle, printer;

if (printer)

dup2 (printer_handle, screen_handle);

/* If printer then direct screen output there */

ecvt 62 LIBRARY

ecvt

The ecvt function converts a double value to a string of ASCII digits. It is not
part of the draft ANSI standard.

Definition

I

I

I

♦include <stdlib.h> .

char *ecvt (double value, int ndigits,
int *decptr, int *signptr);

Purpose

This function converts its argument value into ASCII digits in a static buffer,
and returns a pointer to these digits. The first ndigits digits will be placed in
the string, followed by a null character, and the value will be rounded to this
number of digits (c.f. f cvt, where ndigits refers to the number of digits
after the decimal point). If value is negative, a non-zero integer is stored at
the location pointed to by signptr, otherwise zero is stored. The number of
significant digits of value which precede the decimal point is returned in the
integer pointed to by decptr. Note that neither the sign nor the decimal point
are stored in the string, which contains only digits.

Note that it is usually better to use printf which is easier to use, and being
part of the ANSI standard, is more portable. However, ecvt may be
preferable in low-level applications, such as an alternative printf
command.

Returns

The ecvt function returns a pointer to the static string containing the
characters. The contents of this string will be overwritten by the next call of
ecvt or fcvt, including calls by other library functions such as printf.
Note that the string only has space for 18 characters, and if ndigits is
greater than 18, it will be treated as if it was 18. A double value will never have
more than 18 significant digits.

Related functions

fcvt, printf

I

r

i

i

~7 LIBRARY 63

Example

♦include <stdlib.h>

int expt, sign;
double value = -5.0;

char *buffer = ecvt (value, 6, Sexpt, Ssign);

ecvt

. if (sign != 0)

putchar ('-');

printf ("%c.%se%+03d\n", *buffer, buffer + l,expt - 1);

i

i

i

i

i

i

i

i

i

Produces the output

-5.00000e+00

eof 64 LIBRARY

eof

The eof function tests for end of file on an unbuffered file. It is not part of the
draft ANSI standard.

Definition

♦include <io.h>

int eof (int handle);

Purpose

This function determines whether the position of the file associated with handle
is at the end of the file. This would typically be used to test whether more input
was available before attempting to read data from a file.

Returns

The eof function returns 1 if the file is at the end, zero if it is not. If handle
is not a valid file handle of a currently open file, -1 is returned, and errno is
set to EBADF.

Related functions

feof

Example

♦include <io.h>

♦include <fcntl.h>

char buffer[512] ;

int handle = open (filename, 0_RDONLY, 0)
while (! eof (handle))

read (handle, buffer, 512);

I

LIBRARY 65 exit

exit

The exit function terminates execution of a program.

Definition

♦include <stdlib.h>

, void exit (int status);

Purpose

This function terminates execution of a program, in the same way as if the
main function had returned (normal termination). Any functions registered
using the atexit function will be executed (in reverse order of registration).
After this, all open streams are flushed then closed, and all temporary files
created with the tmpfile function are removed. The program then
terminates, returning the value of status to the program which caused it to be
executed. Under GEMDOS, only the low-order byte of this value is returned.

I

I

I

I

Normally a status of zero would be used to indicate success, and higher values
to indicate increasingly severe error conditions. The macros EXIT_SUCCESS
and EXIT FAILURE are defined in stdlib.h.

Returns

The exit function never returns to its caller.

Related functions

atexit, abort, _exit

Example

The following returns success or failure to the calling program.

♦include <stdlib.h>

int error = 0;

if (error)

exit (EXIT_FAILURE);
else

exit (EXIT SUCCESS);

.exit 66 LIBRARY

exit

The _exit function terminates execution of a program. This function is not
part of the draft ANSI standard.

Definition

♦include <stdlib.h>

void exit (int status);

Purpose

This function terminates execution of a program, but does not perform the
normal closing down procedures. Functions registered using atexit are not
executed, open streams are not flushed or closed, and temporary files are not
removed. The value of status is returned the program which caused it to be
executed. Under GEMDOS, only the low-order byte of this value is returned.

Normally a status of zero would be used to indicate success, and higher values
to indicate increasingly severe error conditions. However, _exit would
normally only be used for severe error conditions where it was not worth
trying to exit cleanly.

Returns

The _exit function never returns to its caller.

Related functions

abort, exit

Example

If a disaster happened, this program will terminate and indicate failure to the
calling program.

♦include <stdlib.h>

int disaster;

if (disaster)
exit (EXIT FAILURE);

I

I

I

1 y LIBRARY 67 exp

i

i

i
Purpose

This function computes the exponential of x.

exp

The exp function returns the exponential of a value.

Definition

♦include <math.h>

double exp (double x);

ReturnsI
The exp function returns the exponential. If x is too large for the result to be

. represented as a double, a range error occurs. In this case, errno will be set
to ERANGE, and the value HUGE_VAL will be returned.

Related functions

log

Example

♦include <math.h>

printf ("e = %f\n", exp (1.0)

fabs 68 LIBRARY

fabs

The fabs function returns the absolute magnitude of a floating point value.

Definition

♦include <math.h>

double fabs(double x);

Purpose

This function computes the absolute value of the double value x.

Returns

The fabs function returns the absolute value of x, as a double. There is no
error return.

Related functions

abs, labs

Example

♦include <math.h>

printf ("The absolute value of -1.234 is %f\n",
fabs (-1 .234)) ;

produces the output

The absolute value of -1.234 is 1.234000

I

LIBRARY 69 fclose

fclose

The fclose function closes a stream.

Definition

♦include <stdio.h>

int fclose (FILE *fp);

Purpose

This function flushes then closes the stream f p. Any buffer allocated by the
system (rather than assigned using setvbuf or setbuf) will be freed, and
files created using tmpfile will be deleted. All streams other than the
predefined standard streams are automatically closed at program termination.

Returns

The fclose function returns zero if no errors were detected, otherwise it
returns EOF, setting errno to indicate the nature of the error.

Related functions

fopen, freopen, tmpfile, fcloseall, fflush, flushall

Example

♦include <stdio.h>

update_workfile()
{ FILE~*workfile;

workfile = fopen ("workfile.dat","w") ;

/* Now write the required data to workfile */

/* Must close workfile before leaving function */
fclose (workfile);

}

I

fcloseall 70 LIBRARY

fcloseall

The fcloseall function closes all streams opened by the program. This
function is not part of the draft ANSI standard.

Definition

♦include <stdio.h>

int fcloseall (void)

Purpose

This function flushes and closes all open streams other than the predefined
standard streams stdin, stdout, stderr, stdaux and stdprn. Any
automatically allocated buffers are released, and temporary files created by
tmpfile are removed, exactly as if fclose had been called for each open
stream. Note that all open streams are automatically closed on normal program
termination.

Returns

The fcloseall function returns the number of streams successfully closed.
If an error is detected, EOF is returned, and errno is set to indicate the error.

Related functions

fopen, freopen, tmpfile, fclose, flushall

Example

♦include <stdio.h>

main ()

{ int quitting = 0;
/* open and use plenty of files */

if (quitting)
if (fcoseall() == EOF)

perror("Error closing files");

}

I

r

i

i

i

i

i

i

i

i

i

i

i

i

i

LIBRARY 7! fcvt

fcvt

The fcvt function converts a double value to a string of ASCII digits. It is not
part of the draft ANSI standard.

Definition

♦include <stdlib.h>

char *fcvt (double value, int ndigits,
int *decptr, int *signptr);

Purpose

This function converts its argument value into ASCII digits in a static buffer,
and returns a pointer to these digits. The parameter ndigits specifies how
many digits after the decimal point are to be converted, and the value will be
rounded to this number of decimal places (c.f. ecvt, where ndigits refers
to the total number of digits to be printed). If value is negative, a non-zero
integer is stored at the location pointed to by signptr, otherwise zero is
stored. The number of significant digits of value which precede the decimal
point is returned in the integer pointed to by decptr. Note that neither the
sign nor the decimal pointare stored in the string, whichcontainsonlydigits.

It is usually better to use printf which is easier to use, and being part of the
ANSI standard, is more portable. However, fcvt may be preferable in low-
level applications, such as an alternativeprintf command.

Returns

The fcvt function returns a pointer to the static string containing the
characters. The contents of this string will be overwrittenby the next call of
ecvt or fcvt, including calls by other library functions such as printf.
Note that the string only has space for 18 characters. A double value will
never have more than 18 significant digits.

Related functions

ecvt, printf

~7\cvt 72 LIBRARY

Example

♦include <stdlib.h>

int expt, sign;
double value = -5.0;

char *buffer = fcvt (value, 4, &expt, &sign);

if (sign != 0)
putchar ('-');

printf ("%c.%se%+03d\n", *buffer, buffer + l,expt - 1);

Produces the output

-5.0000e+00

I

I

i

I

I

I

I

I

I

I

LIBRARY 73 feof

feof

The feof function tests whether a stream has reached the end of a file.

Definition

♦include <stdio.h>

int feof (FILE *stream);

Purpose

This function tests the end-of-file indicator for the specified file. This
indicator is set when a read operation fails because there is no more data in a
file, and cleared when the file position is moved using rewind, f seek, or
f setpos, or when the program explicitly clears it using clearerr.

Note that this is declared as a macro in stdio. h. If stdio. h is not included,
or if feof is ♦undef'd, a library function will be called.

Returns

The feof function returns zero if the end-of-file indicator is not set, and non
zero if it is set.

Related functions

clearerr, ferror, eof, fread

Example

♦include <stdio.h>

double process_data(FILE *stream)
{ double answer;

if (feof (stream))

return -1; /* no more data to process */

/* read some data and process it */

return answer;

y ferror 74 LIBRARY

ferror

The ferror function tests whether an error has been detected for a stream.

Definition

♦include <stdio.h>

int ferror (FILE *stream);

Purpose

This function tests the error indicator for the specified file. This indicator is
set when a read/write error occurs, and cleared by calling rewind or
clearerr.

Note that this is declared as a macro in stdio. h. If stdio . h is not included,
or if ferror is ♦undef'd, a library function will be called.

Returns

The ferror function returns zero if the error indicator is not set, and non
zero if it is set. The result is undefined if stream is not valid.

Related functions

clearerr, feof, rewind

Example

♦include <stdio.h>

main ()

{ FILE *stream = fopen ("myfile.dat", "w")

fwrite (stream ,data, size, number);

if (ferror (stream))

{ rewind (stream);

fwrite (stream ,data, size, number)

/* Try once more */

}

}

I

I

I

LIBRARY 75 fflush

fflush

The fflush function flushes a stream's buffer.

Definition

♦include <stdio.h>

int fflush(FILE *stream);

Purpose

If the file referred to by stream has been opened for output or update, the
contents of its output buffer (if any) are written to the disk file or device. If a
file has been opened for update, the next file operation after a fflush can be
either input or output.

Note that buffers are flushed automatically when they are full, when the file
position is moved using f seek, f setpos or rewind, or when a stream is
closed.

If stream is a NULL pointer then all open streams are flushed in the manner
described above.

I

I

I

I

I

I

I

Returns

The fflush function returns zero if the operation was successful. In the case
of error, EOF is returned, and errno will be set to indicate the error.

Related functions

fseek, fsetpos, rewind, flushall, fclose

Example

♦include <stdio.h>

main ()

{ FILE * stream = fopen ("myfile", "w");

/* Output some data */

fflush (stream);

/* make sure data is written to stream */

}

fgetc 76 LIBRARY

♦include <stdio.h>

int fgetc(FILE *stream)

fgetc

Purpose

This function gets the next character from the file referred to by stream.

Returns

The fgetc function returns the next character (converted to an int). If the
stream is at end-of-file, the stream's end-of-file indicator will be set. If a read
error occurs, the stream's error indicator is set. In both these cases, fgetc
will return EOF.

Related functions

feof, ferror, getc, getchar, fopen

Example

♦include <stdio.h>

FILE * stream = fopen ("myfile", ,:r");

char ch = fgetc (stream);

I

The fgetc function reads a character from a stream.

Definition

I

I

I

I

!

!

I

I

I

I

LIBRARY 77

fgetpos
The fgetpos function stores the current file position of a stream.

Definition

♦include <stdio.h>

int fgetpos(FILE *stream, fpos_t *pos);

fgetpos

Purpose

This function stores the current position of the file referred to by stream into
the object pointed to by pos, in a form suitable for passing to f setpos to
restore the file position to that stored. The type fpos_t is defined in
stdio . h.

Returns

The fgetpos function returns zero if successful, otherwise a non-zero result
will be returned, and errno will be set to indicate the error.

Related functions

fsetpos, ftell, fseek

Example

♦include <stdio.h>

FILE * stream;

fpos_t pos;

fgetpos (stream, Spos);

rewind (stream); /* Back to beginning of the file */

fsetpos (stream, &pos); /* and back to where we were */

I

fgets 78 LIBRARY

fgets

The fgets function reads a string of characters from a stream. I

Definition

I

♦include <stdio.h>

char *fgets (char * s, int n, FILE *stream);

Purpose

This function reads characters from the file referred to by stream into the
string pointed to by s, until n - 1 characters have been read, or the last
character read into s was a newline character, or the end of the file is
reached. A null character is then always appended to the string s.

Returns

The fgets function returns the pointer s if successful. If end-of-file is
encountered before any characters have been read into s, null is returned
and s is not modified. If a read error occurs, null is returned but the
contents of s will have been modified.

Related functions

fgetc, fputs, gets, puts

Example

♦include <stdio.h>

void print_text_file (const char * file)

{ FILE *stream = fopen (file, "r");
char buffer[256];

if (stream != NULL)

while (fgets (buffer, 256, stream) != NULL)
puts (buffer);

fclose (stream);

}

1

1

1

1

1

1

1

1

1

1

LIBRARY 79 filelength

filelength
The filelength function calculates the size of an unbuffered file. It is not
part of the draft ANSI standard.

Definition

♦include <io.h>

long int filelength (int handle);

Purpose

This function computes the length of an unbuffered file associated with the
given handle.

Returns

The filelength function returns the length of the file in bytes. If an error
occurs, -1L is returned, and errno will be set to indicate the error which has
occurred.

Related functions

access, fileno, getdfs

Example

♦include <io.h>

int edit (int handle)

{ if (filelength (handle)) > 10000)
return (-1); /* file too long */

/* edit the file */

}

fileno 80 LIBRARY

fileno
The fileno function returns the file handle associated with a stream. It is not

part of the draft ANSI standard.

Definition

♦include <stdio.h>

int fileno (FILE *stream);

Purpose

This function obtains the operating system handle associated with the file
referred to by stream when it was first opened. This might be required for
using lower level (unbuffered) i/o functions or operating system calls with a
file originally opened as a stream (buffered). Such mixing of modes for a file
should be done with care.

Note that fileno is defined as a macro in stdio. h, but will be called as a
true function if stdio . h is not included, or if fileno is ♦undef'd.

Returns

The fileno function returns the file handle. If stream does not refer to a

valid open file, the result is undefined.

Related functions

fopen, freopen, dup, dup2

Example

♦include <stdio.h>

long int length (FILE *stream)

{ int handle = fileno (stream);

return (filelength (handle))

}

I

I

I

I

I

I

I

I

I

[

I

I

I

I

I

LIBRARY 81 findfirst, findnext

findfirst, findnext

The findfirst and findnext functions find all files in the current
directory that satisfy a filename with wildcards. They are not part of the
draft ANSI standard.

Definition

♦include <io.h>

int findfirst (const char *pathname, struct dta *info,
int attribute);

int findnext (struct dta *info);

Purpose

These functions provide a means of finding all files in the current directory
that match the given pathname, which may include the wildcard characters
' ?' and ' *'. The ' ?' means any letter, and the ' *' means any group of letters.
Thus ABC? . C will include ABC1. C but not ABC10 . C; wheras both of these
will be included using ABC* . C. The most general pathname is * . * which
will include all files in that directory. The attribute defines which
attributes the files must have to be included.

The value of attribute can be used to find files with read and write
access, with read access only, or for finding sub-directories. The macros
S_IREAD and S_IWRITE (in f cntl .h) define read-only and read or write
files respectively. These can be combined (using |) with S_SUBDIR to find
subdirectories.

To find the files, on the first occasion use findfirst and subsequently use
findnext. Only findfirst requires the pathname and attribute as
these are the same for subsequent calls of findnext.

The file found is given by info which is a pointer to the structure dta,
which is defined:-

struct dta {

char attrib; /* attribute found */
long time; /* date and time of file */
long length; /* length of file */
char filename[13];

char extra [22]; /* used by OS */

};

findfirst, findnext 82 LIBRARY

Returns

Both functions return zero if a file or another file has been found and non

zero if no file is found. A disk error, or no file being found with
findfirst will cause errno to be set (the error being enoent if file is
not found with findfirst).

Related functions

access, chmod

Example

/* program to print out the filenames of all files */
/* in the current directory */

♦include <io.h>

♦include <fcntl.h>

main()

{ struct dta info;

if (findfirst("*.*", Sinfo, S_IWRITE | S_IREAD)==0)
do

puts(info.filename);
while (findnext(Sinfo) == 0);

else

/* didn't find any */
perror("Disk error");

I

LIBRARY 83 floor

floor

The floor function returns the largest integer not greater than a value.

Definition

♦include <math.h>

double floor (double x);

Purpose

This function computes the largest integral value which is not greater than the
argument x.

Returns

The floor function returns the integer, expressed as a double. There are no
|- error cases.

1
Related functions

ceil

1 Example

♦include <math.h>

1 double e = 2 .7818

printf ("floor(e)

1
will produce

floor (e), floor (-e))

floor(e) = 2.0, but floor(-e) = -3.0

I

flushall 84 LIBRARY

flushall
I

The flushall function flushes all open streams. It is not part of the draft
ANSI standard.

Definition

♦include <stdio.h>

int flushall (void)

Purpose

This function flushes all open streams (including the predefined streams
stdin, stdout, stderr, straux and stdprn), in the same way as if
fflush hadbeen called for each open stream in turn. It is equivalent to

fflush (NULL);

except for the value returned. Any buffered output data is written to the
corresponding file or device, and any buffered input data is discarded, to be
re-read by the next input operation. The streams are not closed.

Note that buffers are flushed automatically when they are full, when the file
position is moved using fseek, fsetpos or rewind, or when a stream is
closed.

Returns

The flushall function returns the number of open streams. If any errors
occurred while flushing, errno will be set.

Related functions

fflush, fcloseall

Example

♦include <stdio.h>

main ()

{ /* open some files and read and write some data */
flushall (); /* all data is now on disk */

}

I

I

I

I

I

LIBRARY 85 fmod

fmod

The fmod function calculates the remainder from a floating point division.

Definition

♦include <math.h>

double fmod(double x, double y);

Purpose

This function computes the floating point remainder of x/y.

Returns

The fmod function returns the remainder f, where x = f + i*y for some
integer i. The result has the same sign as x, and magnitude less than y. If x/y
cannot be represented (for example, y is zero), the result is undefined.

Related functions

ceil, fabs, floor, modf

Example

♦include <math.h>

double price = 9995.0; /* price in pence */

double pence = fmod (price, 100.0);

fopen 86 LIBRARY

fopen
The fopen function opens a stream for subsequent reading or writing.

Definition

♦include <stdio.h>

FILE *fopen(const char *filename, const char *mode);

Purpose

This function opens the named file filename as a stream (i.e. for buffered
i/o), in a mode specified by the contents of the string pointed to by mode as
follows :-

Mode Meaning

" r " Open text file for reading.
"w" Create new text file for writing, or truncate to zero length.
"a " Open or create text file for writing at end of file only.
" rb" Open binary file for reading.
"wb" Create new binary file for writing, or truncate to zero length.
"ab" Open or create binary file for writing at end of file only.
" r +" Open text file for update.
"w+" Create new text file for update, or truncate to zero length.
"a+" Open or create text file for update, writing at end of file only.
" r+b " Open binary file for update.
"w+b" Create new binary file for update, or truncate to zero length.
"a+b" Open or create binary file for update, writing at end of file only.
" rb+" Open binary file for update.
"wb+" Create new binary file for update, or truncate to zero length.
"ab+ " Open or create binary file for update, writing at end of file only.

Any characters which occur after one of the above sequences will be ignored.

For read modes, the named file must exist, while append or write modes will
create the file if it does not already exist. In write mode, if the file already
exists, the previous contents are discarded.

In update modes, both reading and writing are permitted on the stream, but an
output operation should not be followed by an input operation without an
intervening call of fflush or a file positioning operation (f seek, rewind
or fsetpos) on the stream, and an input operation should not be followed by
an output operation unless fflush or a file positioning operation has been
issued, or the input has encountered end-of-file.

I

I

y LIBRARY 87 fopen

For text files, newline characters (' \n ') are translated into carriage-return /
newline sequences on output, and carriage-return characters are stripped on
input. This translation does not occur for binary files.

I

I

I

I
FILE *stream = fopen ("temp.$$$", "wb")

/* write data to temporary file */

I

I

I

I

I

I

I

Returns

The fopen function returns the file pointer of the opened stream. If the file
could not be opened, NULL is returned, and errno is set to indicate the error
which occurred.

Related functions

fclose, fcloseall, freopen

Example

♦include <stdio.h>

" fprintf 88 LIBRARY

fprintf
The fprintf function writes formatted output to a stream.

Definition

♦include <stdio.h>

int fprintf (FILE *stream, const char *format, ...);

Purpose

This function writes a string of characters controlled by the string pointed to
by format to the file pointed to by stream. See the description of the
function printf for details on the format string. The function takes a
variable number of arguments - the type and number of the arguments after
the format argument is determined by the layout of the string pointed to by
format.

Returns

The fprintf function returns the number of characters written to the stream.
If a write error occurs, a negative value is returned, and errno will be set.

Related functions

printf, sprintf, vfprintf, vprintf, vsprintf

Example

♦include <stdio.h>

FILE *stream = fopen ("data", "w");

int age = 21;
char *name = "Fred";

fprintf (stream, "%s is %d", name, age);

I

[

LIBRARY 89 fputc

fputc

The fputc function writes a character to a stream.

Definition

♦include <stdio.h>

int fputc (int c, FILE *stream);

Purpose

This function writes the character c to the stream described by stream.

Returns

The fputc function returns the character written. If a write error occurs,
EOF is returned and the file error flag and errno will be set.

Related functions

putc, putchar, fputs

Example

♦include <stdio.h>

FILE *stream = fopen ("file", "w");

fputc ('\n', stream);

~7 fputs 90_

fputs

The fputs function writes a string of characters to a stream.

Definition

♦include <stdio.h>

int fputs(const char *s, FILE *stream);

LIBRARY

Purpose

This function writes a string of characters pointed to by s to the file described
by st ream, up to but not including the terminating null char.

Returns

The fputs function returns zero if successful. If a write error occurs, a non
zero value is returned, and the stream's error indicator and errno will be set.

Related functions

fputc, putc, puts

Example

♦include <stdio.h>

FILE *stream = fopen ("file", "w")

fputs ("Hello", stream);

I

LIBRARY 91 fread

fread

The fread function reads data from a stream into an array.

Definition

♦include <stdio.h>

size_t fread(void *ptr, size_t size, size_t nmemb,
FILE *stream);

Purpose

This function reads up to nmemb objects, each of s ize bytes, from the stream
described by stream into the array whose base is given by ptr. If the stream
was opened in text mode, carriage returns in the input will be removed. This is
unlikely to be what was intended.

I

I

I

I

I

I

I

Returns

The fread function returns the number of objects successfully read - this may
be less than nmemb if a read error or end-of-file was encountered. If an error

occurred, the stream's error indicator and errno will be set; if end-of-file is
encountered, the stream's end-of-file indicator is set.

Related functions

fopen, fwrite, read, write

Example

♦include <stdio.h>

FILE *stream = fopen ("data", "rb");

double data[100];

fread (data, sizeof (double), 100, stream)

I

free 92 LIBRARY

free

The free function releases storage allocated using malloc.

Definition

♦include <stdlib.h>

void free (void *ptr);

Purpose

If ptr is not NULL, this function causes the storage it points to (which must
have been previously allocated using malloc, calloc or realloc) to be
released and made available for re-use. If ptr is NULL, the function does
nothing.

Returns

The free function returns no value. If ptr was not previously allocated using
malloc, calloc or realloc, or has already been released, unpredictable
results will occur.

Related functions

calloc, malloc, realloc

Example

♦include <stdlib.h>

main ()

{ char *buffer = malloc (16384)

/* use the buffer */

free (buffer);

}

I

LIBRARY 93 freopen

freopen

The freopen function associates a stream with a file or device, closing any
file it was previously associated with.

Definition

C ♦include <stdio.h>

FILE *freopen(const char *filename, const char *mode,
FILE *stream);

Purpose

I

I

I

This function closes any file currently associated with stream, and then opens
the file specified by filename in the mode specified by mode, and associates
that file with stream. The permitted values of the mode parameter and their
meanings are described under the fopen function.

This function is often used to make one of the standard streams stdin,
stdout, stderr, stdaux or stdprn refer to a disk file rather than a
device.

Returns

The freopen function returns a pointer to the newly opened file if successful
(this is the same as stream). If an error occurs, a NULL pointer is returned,
and errno will be set. Any errors which occur while trying to close the file
previously associated with stream are ignored.

I

I

I

I

Related functions

fopen, fclose

Example

♦include <stdio.h>

int logfile = 0;

main ()

{ if (hardcopy)
freopen ("myfile.log", "w", stdout);

/* perform some output */

}

I

frexp 94 LIBRARY

I
frexp

The frexp function breaks a floating-point value into a normalized fraction
and a binary exponent.

Definition

♦include <math.h>

double frexp (double value, int *exp);

Purpose

This function breaks the floating-point value value into a normalized fraction
and an integral power of two by which the fraction is multiplied. The power of
two is stored in the object pointed to by exp.

Returns

If value is zero, both the function result and the value stored in *exp are zero.
Otherwise, the frexp function returns the normalized fraction n, with
magnitude in the range 0 . 5 <= n < 1, where n times 2 to the power of exp
is equal to value.

Related functions

ldexp, modf

Example

♦include <math.h>

double x = 3.141592;

double fraction;

int exp;

fraction = frexp (x, &exp);

I

LIBRARY 95 fscanf

fscanf

The fscanf function reads formatted input from a stream.

Definition

♦include <stdio.h>

int fscanf (FILE *stream, const char *format, ...);

Purpose

This function reads input items controlled by the string pointedto by format
from the file pointed to by st ream. See the description of the function scanf
for details on the format string. The function takes a variable number of
arguments -the type and number of the arguments after the format
argument is determined by the layout of the string pointed to by format.

Returns

The fscanf function returns the numberof input items assigned, or EOF if an
input error occurred before any conversion was made.

Related functions

scanf, sscanf

Example

♦include <stdio.h>

FILE *stream = fopen ("data", "r");

char name[20] ;

int age;

while (Ifeof (stream))
{ fscanf (stream, "Name %20s age %d\n", name, Sage);
if (age < 18) printf ("%s is under age\n", name);

}

fseek 96 LIBRARY

fseek
The fseek function moves the file pointer associated with a stream.

Definition

♦include <stdio.h>

int fseek (FILE *stream, long int offset, int whence);

Purpose

This function sets the file pointer (the location within the file at which the next
input or output is performed) for the file associated with stream. The file
pointer can be moved relative to three different positions depending on the
value of whence as follows :-

Whence Meaning

SEEK_SET relative to the start of the file
SEEK_CUR relative to the current file position
SEEK_end relative to the end of the file

The macros SEEK_SET, seek_CUR and SEEK_END are defined in stdio. h.

The file's end-of-file indicator is cleared, and the effect of any previous call of
ungetc is undone. If the stream was opened in update mode, the next
operation after a call of fseek may be either input or output.

Note that for files opened in text mode, it is not meaningful to seek unless
offset is zero or offset is a value previously returned by a call of ftell
and whence is equal to SEEK_SET.

Returns

The fseek function returns zero if successful. If the request was improper,
such as an attempt to seek outside the bounds of the file, it returns non-zero,
and errno will be set to indicate the error.

Related functions

ftell, fgetpos, fsetpos

I

I

I

~7 LIBRARY 97 fseek
Example

♦include <stdio.h>

FILE *stream = fopen ("data", "rb");

char last_ch;

fseek (stream, -11, SEEK_END);

last ch = fgetc (stream);

fsetpos 98 LIBRARY

fsetpos
The fsetpos function sets the file pointer associated with a stream.

Definition

♦include <stdio.h>

int fsetpos (FILE *stream, fpos_t *pos)

Purpose

This function sets the file pointer (the location within the file at which the next
input or output is performed) for the file associated with stream to position
pos, which must be a value previously returned by fgetpos.

The file's end-of-file indicator is cleared, and the effect of any previous call of
ungetc is undone. If the stream was opened in update mode, the next
operation after a call of fsetpos may be either input or output.

Returns

The fsetpos function returns zero if successful. If the request was invalid, it
returns non-zero, and errno will be set to the value EINVAL.

Related functions

fgetpos, fseek, ftell

Example

♦include <stdio.h>

FILE *stream;

fpos_t pos;

fgetpos (stream, &pos); /* get the position */
rewind (stream); /* move away */
fsetpos (stream, &pos); /* move back again */

I

LIBRARY 99 ftell

ftell

The ftell function returns the position of the file pointer associated with a
stream.

Definition

♦include <stdio.h>

long int ftell (FILE *stream)

Purpose

This function returns the position of the file pointer (the location within the
file at which the next input or output is performed) for the file associated with
stream. This value may then be used in a subsequent call of fseek to restore
the file to that position.

I
For binary files, ftell function returns the file position relative to the start
of the file. However for either binary or text files, the value returned can be
used by fseek to restore the file to that position. If an error occurs, it returns
-1L, and errno will be set to indicate the error.

I

I

I

I

I

Returns

Related functions

fgetpos, fsetpos, fseek

Example

♦include <stdio.h>

FILE *stream = fopen ("data", "rb");

long int number;

/* read some data */

number = ftell (stream); /* bytes read so far */

y fwrite 100 LIBRARY

fwrite ~

The fwrite function writes data from an array to a stream.

Definition

♦include <stdio.h>

size_t fwrite (const void *ptr, size_t size,
size t nmemb, FILE *stream);

Purpose

This function writes up to nmemb objects, each of size bytes, to the stream
described by stream from the array whose base is givenby ptr. If the stream
was opened in text mode, any line-feeds output will be translated to carriage-
return / line-feed pairs. This is unlikely to be what was intended.

Returns

The fwrite function returns the number of objects successfully written - this
will be less than nmemb only if a write error occurred. If an error occurred,
the stream's error indicator and errno will be set.

Related functions

fopen, fread, read, write

Example

♦include <stdio.h>

FILE *stream = fopen ("data", "rb");

double data[100];

int i;

for (i=0; i<100; i++)
data[i] = sin (((double) i) / 100);

fwrite (data, sizeof (double), 100, stream)

i

i

i

i

i

i

i

i

i

i

LIBRARY 101 gemdos

gemdos
The gemdos function makes an operating system TRAP #1 call. It is not part
of the draft ANSI standard.

Definition

♦include <dos.h>

long int gemdos(int funcno, ...) ;

Purpose

This function calls the operating system (gemdos) function whose number is
given in the parameter funcno. The number, type and meaning of the other
parameters depend on the function, and are documented in Atari technical
information and a number of books about the Atari ST. A number of macros

are declared in dos .h, one for each operating system function, which expand
into calls of the gemdos function with appropriate parameters.

Returns

The gemdos function returns the long value returned by the operating system
TRAP #1 instruction. The meaning of this return value depends on the value of
funcno, but frequently a negative value will indicate an error, corresponding
to the positive error number with the same magnitude defined in errno .h.

Related functions

bios, xbios

Example

♦include <dos.h>

/* Enter 68000 supervisor mode */
long int old_ssp;

oldssp = gemdos(0x20, 01);

/* Now return to user mode */

gemdos(0x20, old_ssp);

~7 getc 102 LIBRARY

getc

The getc function reads a character from a stream.

Definition

♦include <stdio.h>

int getc(FILE *stream);

Purpose

This function reads the next character from the file specified by stream. It is
equivalent to fgetc, except that many C compilers (but not Prospero C)
implement it as an unsafe macro (the argument stream may be evaluated
twice, including possible side effects).

Returns

The getc function returns the next character (converted to an int). If the
stream is at end-of-file, the stream's end-of-file indicator will be set. If a read
error occurs, the stream's error indicator is set. In both these cases, getc will
return EOF.

Related functions

fgetc, getchar, ungetc, getch, getche

Example

♦include <stdio.h>

/* append one file to the end of another */
FILE *fl, *f2;

char c;

fl = fopen ("filel.dat", "r");
f2 = fopen ("file2.dat", "a");

while ((ch = getc(fl)) != EOF)
putc(ch, f2);

I

I

LIBRARY 103 getch

getch

The getch function reads a character from the keyboard. It is not part of the
draft ANSI standard.

Definition

C ♦include <conio.h>

int getch (void);

I

1

Purpose

This function reads a character from the keyboard, without echoing it to the
screen.

Returns

The getch function returns the character read (converted to an int).

I

I

I

I

I

I

Related functions

getchar, getche, ungetch

Example

♦include <conio.h>

char ch;

fputs("Continue (y/n) ?", stdout);
do ch = toupper(getch());

while (ch != 'Y' && ch != 'N');

if (ch == 'N')

exit (1) ;

getchar 104 LIBRARY

getchar

The getchar function reads a character from a standard input.

Definition

♦include <stdio.h>

int getchar(void) ;

Purpose

This function reads the next character from standard input. It is equivalent to
getc(stdin).

Returns

The getchar function returns the next character (converted to an int). If
stdin is at end-of-file, the end-of-file indicator will be set. If a read error
occurs, the error indicator is set. In both these cases, getchar will return
EOF.

Related functions

fgetc, getc, ungetc, getch, getche

Example

/* Append standard input to file "echo.log" */

♦include <stdio.h>

FILE *echo;

char ch;

echo = fopen("echo.log", "a");
while ((ch = getchar()) != EOF)

fputc(ch, echo);

I

I

LIBRARY 105 getche

getche

The get che function reads a character from the keyboard. It is not part of the
draft ANSI standard.

Definition

♦include <conio.h>

int getche (void);

Purpose

This function reads a character from the keyboard and echoes it to the screen.

I

I

I

I

I

I

I

I

Returns

The getche function returns the character read (converted to an int).

Related functions

getchar, getch, ungetch

getche 106 LIBRARY

Example

/* a fairly simple line input routine */

♦include <conio.h>

char ch, buffer[79];

int index = 0;

do {ch = getche ();
if (ch == '\b' && index > 0)

{ putchar(' '); /* clear character */
putchar('\b'); /* and backspace */
index—;

}
else if (ch != '\r')
{ if (index == 78) /* end of line */

{ putchar('\a'); /* beep */
putchar ('\b'); /* backspace */
putchar (' '); /* clear the char */
putchar ('\b'); /* and backspace */

}
else if (isprint (ch))

buffer[index++] = ch;

}
else

buffer[index] = '\0';/* put in null terminator */
} while (ch != '\r');

i

i

i

i

i

i

i

i

i

i

i

i

i

LIBRARY 107 getcwd

getcwd
The get cwd function returns the pathname of the current working directory.
It is not part of the draft ANSI standard.

Definition

♦include <direct.h>

char *getcwd (char *buffer, size_t size);

Purpose

This function returns the full pathname (including drive letter) of the current
working directory. If buffer is not NULL, up to size bytes (including a null
terminator) of the pathname are stored in the object to which it points. If
buffer is NULL, an array of size characters is allocated using malloc, and
the pathname stored in it. This array can later be released by the program
using free.

Returns

The getcwd function returns a pointer to the buffer in which the pathname
was written. If an error occurs, or the pathname is longer than size - 1
characters, NULL is returned, and errno will be set to indicate the error.

Related functions

chdir, mkdir, rmdir

Example

♦include <direct.h>

char *pathname;

pathname = getcwd (NULL, 80);

if (pathname != NULL)
{ printf ("Current directory is %s\n", pathname);

free (pathname);

}

getdfs 108 LIBRARY

getdfs
The getdfs function is used to determine the disk free space. It is not part of
the draft ANSI standard.

Definition

♦include <direct.h>

void getdfs (int drive, struct DISKINFO *info)

Purpose

This function examines the disk specified by drive, where 0 indicates the
default drive, 1 means drive A and so on, and returns information about the
amount of free space available in the structure pointed to by info. The
structure DISKINFO is defined in direct. h as follows :-

struct DISKINFO

{ long free; /

long cpd; /
long bps; /

long spc; }; /

No. of free clusters */

No. of clusters per disk */
No. of bytes per sector */
No. of sectors per cluster */

Returns

There is no return value.

Related functions

getdisk, setdisk

Example

♦include <direct.h>

struct DISKINFO dinfo;

long free, total;

getdfs(0, Sdinfo);
free = dinfo.free * dinfo.bps * dinfo.spc;
total = dinfo.cpd * dinfo.bps * dinfo.spc;
printf ("%ld bytes free out of %ld\n", free, total)

I

y LIBRARY 109 getdisk

I

I

I

getdisk

The getdisk function returns the drive number of the current default drive.
It is not part of the draft ANSI standard.

Definition

♦include <direct.h>

int getdisk (void);

Purpose

This function is used to determine the current default drive.

I

I

Returns

The getdisk function returns an integer indicating the current default drive,
where 0 means drive A, 1 means drive B, and so on.

Related functions

setdisk, getcwd

I

I

I

I

Example

♦include <direct.h>

♦include <stdio.h>

char command[256] ;

putchar(getdisk() + 'A'
putchar('>');

gets (command);

~y getenv 110 LIBRARY

getenv
The getenv function searches the program's environment data.

Definition

♦include «6tdlib.h>

char *getenv (const char *name);

Purpose

This function searches the program's environment list for a variable whose
name is that given by the parameter name. All environment variables have
upper case names, and so the parameter name must also be in upper case.

Returns

The getenv function returns a pointer to the string assigned to the given
environment variable. If the environment variable is not found, NULL is
returned.

Related functions

spawn...

Example

♦include <stdlib.h>

char * pathname;

pathname = getenv("TMP");
if (pathname != NULL)

chdir(pathname) ;
workfile = fopen ("temp.$$$", "w");

I

I"

I

I

I

I

I

I

I

I

I

I

I

I

LIBRARY 11] gets

gets

The gets function reads a string from standard input.

Definition

♦include <stdio.h>

char *gets (char *s)

Purpose

This function reads input characters from the stream stdin into the array
pointed to by s, until end-of-file is reached or a new-line character (which is
not stored in the array) is read. A terminating null character is then written to
the array. Note that unlike fgets, no checks are made that the number of
characters read does not exceed the size of the array.

Returns

The gets function returns s if successful. If end-of-file was encountered
before any characters were read it returns null, and the contents of the array
are not changed. If a read error occurs, null is returned and errno will be
set to indicate the error. In this case the contents of the array will be
indeterminate.

Related functions

fgets, getc, getchar

Example

♦include <stdio.h>

char name[80];

puts("Please enter your name")

gets (name) ;

printf("Hello, %s\n", name);

~y gmtime 112 LIBRARY

gmtime
The gmt ime function converts a calendar time to Greenwich Mean Time.

Definition

♦include <time.h>

struct tm *gmtime (const time_t *timer);

Purpose

This function converts the time in the structure pointed to by timer into a
broken down time, expressed as Greenwich Mean Time. The time pointed to
by timer is assumed to be in the local time zone (normally, it will have been
obtained using the t ime function), and the time difference between local time
and GMT is determined by examining the environment variable TZ. The value
of this variable should consist of three letters describing the standard time zone
name, followed by a signed decimal number indicating the number of hours by
which the local time precedes GMT, followed (if daylight saving time is in
effect) by another three letter code describing the daylight saving time zone
name.

Returns

The gmtime function returns a pointer to a static structure containing the
broken down time. This structure is overwritten by the next call of gmt ime,
asctime, ctime or localtime. If the TZ environment variable is not set,
the gmtime function returns NULL, indicating that GMT is not available.

Related functions

asctime, ctime, localtime, mktime, time, tzset

Example

♦include <time.h>

time_t t = time (NULL);
struct tm * GMT = gmtime(St);

if (GMT != NULL)
printf("GMT is %s\n", asctime(GMT));

y LIBRARY 113 isalnum

isalnum

i

i

i

i

i

i

i

i

i

i

The isalnum function tests whether a character is alphanumeric.

Definition

♦include <ctype.h>
int isalnum (int c);

Purpose

This function tests whether the character c (converted to an int) is either a
letter or a digit. It is declared as a macro in ctype . h, but if this is not
♦ included, or if isalnum is ♦undef'd, a library function will be called.

Returns

The isalnum function returns zero if c is neither a letter nor a digit,
otherwise it returns non-zero.

Related functions

isalpha, isdigit, isxdigit

Example

♦include <ctype.h>

char *name, *S;

/* Read a name consisting of letters and digits only */
while (isalnum(*s))

. *name++ = *s++;

*name = '\0';

isalpha 114 LIBRARY

isalpha

The isalpha function tests whether a character is a letter.

Definition

♦include <ctype.h>
int isalpha (int c)

Purpose

This function tests whether the character c (converted to an int) is either an
upper case or a lower case letter. It is declared as a macro in ctype. h, but if
this is not ♦included, or if isalpha is ♦undef'd, a library function will be
called.

Returns

The isalpha function returns zero if c is neither an upper case nor a lower
case letter, otherwise it returns non-zero.

Related functions

isalnum, isupper, islower

Example

♦include <ctype.h>

char *s;

/* Check that a string starts with a letter */
if (!isalpha(*s))

puts("Error - string must start with a letter'

LIBRARY 115 isascii

isascii

The isascii function tests whether a character is in the range 0 to 127. It is
not part of the draft ANSI standard.

Definition

♦include <ctype.h>
int isascii (int c);

Purpose

This function tests whether the character c (converted to an int) is in the
range of the 7-bit ASCII code (0 to 127). It is declared as a macro in ctype . h,
but if this is not ♦included, or if isascii is ♦undef'd, a library function
will be called.

Returns

The isascii function returns zero if c is not in the range 0 to 127, otherwise
it returns non-zero.

Example

♦include <ctype.h>

char *s;

int ch;

while (ch = *s++)

if (!isascii (c))

printf("Non-ASCII character %d encountered\n" , c)

y iscntrl 116 LIBRARY

iscntrl

The iscntrl function tests whether a character is a control character.

Definition

♦include <ctype.h>
int iscntrl (int c);

Purpose

This function tests whether the character c (converted to an int) is a control
character. It is declared as a macro in ctype .h, but if this is not ♦included,
or if iscntrl is ♦undef'd, a library function will be called.

Returns

The iscntrl function returns zero if c is not a control character, otherwise it
returns non-zero.

Related functions

isgraph, isprint, ispunct

Example

♦include <ctype.h>

int c;

do

{ c = getch () ;
if (iscntrl (c))

switch (c)

{ case 1: do_control_A();
break;

case 2: do_control_B();
break

}

} while (c != 3); /* Until control C pressed */

I

1

LIBRARY 117 isdigit

isdigit

The isdigit function tests whether a character is a decimal digit.

Definition

♦include <ctype.h>
int isdigit (int c);

Purpose

This function tests whether the character c (converted to an int) is a digit. It
is declared as a macro in ctype. h, but if this is not ♦included, or if
isdigit is ♦undef'd, a library function will be called.

Returns

The isdigit function returns zero if c is not a digit, otherwise it returns
non-zero.

Related functions

isalnum, isxdigit

I
Example

♦include <ctype.h>

I

I

I

I

I

char *s;

int number;

/* Read and convert a decimal number */
number = 0;

while (isdigit(*s))
number = number * 10 + *s++ - '0';

isgraph 118 LIBRARY

isgraph
The isalnum function tests whether a character is a graphic character.

Definition

♦include <ctype.h>
int isgraph (int c)

Purpose

This function tests whether the character c (converted to an int) is any
printable character other than space. It is declared as a macro in ctype . h, but
if this is not ♦included, or if isgraph is ♦undef'd, a library function will
be called.

Returns

The isgraph function returns zero if c is not a printable character other than
space, otherwise it returns non-zero.

Related functions

isprint, iscntrl

Example

♦include <ctype.h>

/* Convert all non-printing characters and spaces in
a string to underscores */

char *s;

while (*s)

if (isgraph(*s))
s++;

else

*S + + = ' ';

I

LIBRARY 119 islower

islower

The islower function tests whether a character is a lower case letter.

Definition

♦include <ctype.h>
int islower (int c);

Purpose

This function tests whether the character c (converted to an int) is a lower
case letter. It is declared as a macro in ctype .h, but if this is not ♦included,
or if islower is ♦undef'd, a library function will be called.

Returns

The islower function returns zero if c is not a lower case letter, otherwise it
returns non-zero.

Related functions

isalnum, isalpha, isupper

Example

♦include <ctype.h>

char *s;

long int lower;

/* Count the lower case letters in a string */
lower = 0;

while (*s)

if (islower(*s++))

lower++;

' isprint 120 LIBRARY

isprint
The isprint function tests whether a character is printable.

Definition

♦include <ctype.h>
int isprint (int c);

Purpose

This function tests whether the character c (converted to an int) is any
printable character (including space). It is declared as a macro in ctype . h,
but if this is not ♦included, or if isprint is ♦undef'd, a library function
will be called.

Returns

The isprint function returns zero if c is not printable, otherwise it returns
non-zero. All characters whose ASCII code is greater than or equal to that of
the space character are considered printable, except for DEL (ASCII 0x7 f).

Related functions

isgraph, isspace, isascii

Example

♦include <ctype.h>

/* print out a string, replacing unprintable characters
with periods */

char *s, ch;

while ((ch = *s++) != '\0')
putchar (isprint (ch) ? ch : '.');

I

I

I

I

I

I

I

LIBRARY 121 ispunct

ispunct

The ispunct function tests whether a character is a punctuation character.

Definition

♦include <ctype.h>
int ispunct (int c);

Purpose

This function tests whether the character c (converted to an int) is a
punctuation character. This includes all printing characters except space or
those for which isalnum is true. It is declared as a macro in ctype .h, but if
this is not ♦included, or if ispunct is ♦undef'd, a library function will be
called.

Returns

The ispunct function returns zero if c is not a punctuation character,
otherwise it returns non-zero.

Related functions

isalnum, isgraph, isprint

Example

♦include <ctype.h>

/* break a string at the first punctuation character */

char *s;

while (*s && lispunct (*s))
s + + ;

*s = '\ 0 ';

~y isspace 122 LIBRARY

isspace
The isspace function tests whether a character is white space.

Definition

♦include <ctype.h>
int isspace (int c);

Purpose

This function tests whether the character c (converted to an int) is any white
space character (i.e. space ' ', form feed ' \ f ', newline ' \n ', carriage
return ' \r ', horizontal tab ' \t' or vertical tab ' \v'). It is declared as a
macro in ctype . h, but if this is not ♦included, or if isspace is
♦undef'd, a library function will be called.

Returns

The isspace function returns zero if c is not a white space character,
otherwise it returns non-zero.

Related functions

isgraph, ispunct

Example

♦include <ctype.h>

/* skip leading white space */

char *s;

while (*s && isspace (*s))
s++;

y LIBRARY 123 isupper

I
lsupper

The isupper function tests whether a character is an upper case letter.

Definition

I

I

I

I

I

I

I

I

♦include <ctype.h>
int isupper(int c) ;

Purpose

This function tests whether the character c (converted to an int) is an upper
case letter. It is declared as a macro in ctype. h, but if this is not ♦included,
or if isupper is ♦undef'd, a library function will be called.

Returns

The isupper function returns zero if c is not an upper case letter, otherwise
it returns non-zero.

Related functions

isalnum, isalpha, islower

Example

♦include <ctype.h>

/* Count the upper case letters in a string */

char *s;

long int upper;

upper = 0;

whi1e (*s)

if (isupper (*s++)
upper++;

I

~7 isxdigit 124 LIBRARY

isxdigit

The isxdigit function tests whether a character is a hexadecimal digit.

Definition

♦include <ctype.h>
int isxdigit (int c);

Purpose

This function tests whether the character c (converted to an int) is a
hexadecimal digit (i.e. one of the characters '0' to '9', 'A' to 'F or 'a' to 'f). It
is declared as a macro in ctype. h, but if this is not ♦included, or if
isxdigit is ♦undef'd, a library function will be called.

Returns

The isxdigit function returns zero if c is not a hexadecimal digit, otherwise
it returns non-zero.

Related functions

isdigit, isalpha, isalnum

Example

♦include <ctype.h>

/* read and convert a hexadecimal number */

char *s;

unsigned long int number;

number = 0;

while isxdigit(*s)
{ int ch = *s++;

if (isdigit (ch))
ch -= '0 ';

else

ch -= (islower(ch) ? 'a' : 'A') - 10,
number = number * 16 +ch;

}

I

I

I

I

LIBRARY 125 itoa

itoa

The itoa function converts an integer into an ascii siring. It is not partof the
draft ANSI standard.

Definition

#include <stdlib.h>

char *itoa (int value, char *string, int radix);

Purpose

I

I

I

I

I

I

I

This function converts the integer value into ASCII characters in string,
representing the value of the integer in the base radix. If radix is 10, and
value is negative, the result will start with a minus sign, otherwise it is treated
as unsigned. A terminating null character is always appended to the resulting
string. The maximum number of characters which can be placed into the array
pointed to by string is 17 (when radix is 2).

Returns

The itoa function returns the value of string.

Related functions

ltoa, ultoa, sprintf, atoi, atoi, strtol, strtoul

Example

♦include <stdlib.h>

char str[17];

int n;

for (n = 0; n < 20; n++)

printf (" %3d in binary is %10s \n", n,
itoa (n, str, 2));

kbhit 126 LIBRARY

kbhit

The kbhit function tests whether a character is available in the keyboard
buffer. It is not part of the draft ANSI standard.

Definition

♦include <conio.h>

int kbhit (void);

Purpose

This function tests whether or not a key has been pressed since the one which
was last read, and therefore whether or not a call of getch or getche would
cause the program to pause.

Returns

The kbhit function returns non-zero if a key has been pressed, otherwise
zero.

Related functions

getch, getche

Example

♦include <conio.h>

/* List a file, pausing if a key is pressed */
FILE *f = fopen("listfile", "r");

while (!feof(f))

{ fgets(buffer, f) ;
fputs(buffer, stdout);

if (kbhit())

{ getcheO; /* Discard key which made us pause */
while (getche() != ' ');

/* Wait for a space before continuing */
}

y LIBRARY 127 labs

I

I

I

I

I

I

I

I

labs

Definition

♦include <stdlib.h>

long int labs (long int j);

Purpose

This function returns the absolute value of the long integer j.

Returns

The labs function returns the absolute value of j.

Related functions

abs, fabs

Example

♦include <stdlib.h>

main ()

{ long int i;

Cfor (i = -49999; 1 < 49999; i += 10000)

printf("%ld\n", labs(i));

}

I

I

I

I

produces as output

49999

39999

29999

19999

9999

1

10001

20001

30001

40001

Idexp 128 LIBRARY

Idexp
The Idexp function multiplies a floating point value by a power of two.

Definition

♦include <math.h>

double Idexp (double x, int exp);

Purpose

This function multiplies the floating point value x by 2 raised to the power of
exp. This function is used internally by the library.

Returns

The Idexp function returns x times 2 raised to the power of exp. If the result
is too large to be represented as a double, a range error occurs. In this case,
errno will be set to ERANGE, and the value HUGE val will be returned.

Related functions

frexp

Example

♦include <math.h>

printf ("1 Megabyte = %g bits\n", Idexp (8.0, 20));

produces the output

1 Megabyte = 8.38861e+06 bits

I

LIBRARY 129 Idiv

Idiv

The Idiv function computes the quotient and remainder of a long integer
division.

Definition

♦include <stdlib.h>

Idiv t Idiv (long int numer, long int denom);

Purpose

This function calculates the quotient and remainder of the division of numer
Cby denom. The sign of the remainder is always the same as the sign of the

quotient (unless the remainder is zero). If denom is zero, or numer is
MIN LONG and denom is -1, the result is undefined.

I Returns

The Idiv function returns a structure with two long int fields, quot and
rem. The type ldiv_t is defined in stdlib.h.

I

I

I

I

I

Related functions

div

Example

♦include <stdlib.h>

ldiv_t result;
long hours, minutes;

result = Idiv (minutes, 601);

hours = result.quot;

minutes = result.rem;

if (minutes < 0)

{ minutes += 60; /* put into range */
hours--;

}

localtime 130 LIBRARY

localtime

The localtime function converts a calendar time to local time.

Definition

♦include <time.h>

struct tm *localtime (const time t *timer);

Purpose

This function converts the time in the structure pointed to by timer into a
broken down time. The time pointed to by timer is assumed to be in the local
time zone (normally, it will have been obtained using the time function).

Returns

The localtime function returns a pointer to a static structure containing the
broken down time. This structure is overwritten by the next call of gmtime,
asctime, ctime orlocaltime.

Related functions

asctime, ctime, gmtime, mktime, time

Example

♦include <time.h>

time_t t = time (NULL);

/* We could use ctime here ... */
printf("The time is %s\n", asctime(localtime(&t)))

LIBRARY 131 'OS

log

The log function calculates the natural logarithm of a value.

Definition

I

♦include <math.h>

double log (double x)

Purpose

This function calculates the natural logarithm of the floating point value x.

Returns

The log function returns the logarithm. If x is zero, a range error occurs -
. errno is set to ERANGE, and -HUGE_VAL is returned. If x is negative, a

domain error occurs - errno is set to EDOM, and the value 0.0 is returned.

I

I

I

I

Related functions

exp, loglO, pow

Example

♦include <math.h>

double cube_root(double x)
{ if (x<0)

return -exp (log (-x) / 3)
return exp (log (x) / 3);

}

log 10 132 LIBRARY

login

The log function calculates the base ten logarithm of a value.

Definition

♦include <math.h>

double loglO (double x);

u

Purpose

This function calculates thebase ten logarithm of thefloating point value x.

Returns

The loglO function returns the base ten logarithm. If x is zero, a range
error occurs - errno is set to ERANGE, and -HUGE_VAL is returned. If x is
negative, a domain error occurs - errno is set to EDOM, and the value 0.0 is
returned.

Related functions

exp, log, pow

Example

♦include <math.h>

/* Calculate the exponent of a value - can't exceed
integer range*/

double x;

int exponent = floor (loglO(x));

I

I"

I

[

I

I

I

I

I

I

I

I

I

I

LIBRARY 133 longjmp

longjmp

The longjmp function restores program execution to a previously saved state.

Definition

♦include <setjmp.h>
void longjmp (jmp_buf env, int val);

Purpose

This function restores the program execution environment to that saved in
jmpbuf by a previous call of set jmp. The program counter, stack pointer,
and registers are restored to their stored values, and execution continues as if
the corresponding call of set jmp had returned the value specified by val.

This function is typically used to deal with error conditions, to avoid a long
series of function returns.

Returns

The longjmp function never returns to its caller, but instead causes the last
call of set jmp with jmp_buf as its argument to return the value val. Note
however that a return value of zero is reserved to mean indicate a return from
a direct invocation of set jmp, so that if val is zero, the return value from
set jmp will be one. If there was no such call of set jmp, or if the function
containing the set jmp call is no longer active, the results will be undefined
(almost certainly a system crash).

Related functions

setjmp

longjmp 134 LIBRARY

Example

♦include <setjmp.h>

jmp_buf error;

main ()

{ int err = setjmp(error);
if (err)

{ printf("Fatal error %d - terminating\n");
exit (3) ;

}

process_file();

}

int process_file(void) ;
{ FILE *f = fopen("data.in", "r");

if (f == NULL)

longjmp(error, 5);

}

I

LIBRARY 135 Iseek

Iseek

The lseek function sets the file position of an unbuffered file. It is not part of
the draft ANSI standard.

Definition

[♦include <io.h>

long lseek (int handle, long int offset, int whence);

Purpose

This function sets the file pointer (the location within the file at which the next
input or output is performed) for the unbuffered file associated with handle.
The file pointer can be moved relative to three different positions depending
on the value of whence as follows :-

Whence Meaning

SEEK_SET relative to the start of the file
SEEK_CUR relative to the current file position
SEEK_END relative to the end of the file

The macros SEEK_SET, SEEK_CUR and SEEK_END are defined in stdio .h.

Note that for files opened in text mode, it is not meaningful to seek unless
offset is zero or of f set is a value previously returned by a call of tell
and whence is equal to SEEK_SET.

I

I

I

I

I

I

I

I

I

Returns

The lseek function returns the new file position. If the request was improper,
such as an attempt to seek outside the bounds of the file, it returns a negative
value, and errno will be set to indicate the error.

Related functions

fseek, ftell, fgetpos, fsetpos, tell

Iseek 136 LIBRARY

Example

♦include <io.h>

♦include <stdio.h> /* For macro definitions */

/* Seek to end of file to determine size, then restore
file pointer to original position */

long old_pos, size;
int handle;

old_pos = tell(handle);
size = lseek(handle, 0, SEEK_END);
lseek(handle, old pos, SEEK SET);

I

I

LIBRARY 137 Itoa

ltoa

The ltoa function converts an integer into an ASCII string. It is not part of
the draft ANSI standard.

Definition

♦include <stdlib.h>

char *ltoa (long int value, char *string, int radix);

Purpose

This function converts the long integer value into ASCII characters in
Estring, representing the value of the integer in the base radix (in the range

2 to 36). If radix is 10, and value is negative, the result will start with a
minus sign, otherwise it is treated as unsigned. A terminating null character is
always appended to the resulting string. The maximum number of characters
which can be placed into the array pointed to by string is 33 (when radix is
2).

I

I
Related functions

itoa, ultoa, sprintf, atoi, atoi, strtol, strtoul

I

I

Returns

The ltoa function returns the value of string.

Example

♦include <stdlib.h>

char str [33];

int base;

for (base = 2; base < 37; base++)

printf(" 1000000 in base %2d is %s \n", base,
ltoa (1000000, str, base));

malloc 138 LIBRARY

malloc
The malloc function allocates a block of memory dynamically.

Definition

♦include <stdlib.h>

void *malloc (size t size);

Purpose

This function allocates a block of memory of s i ze bytes. The memory should
be released when no longer required using free.

Returns

The malloc function returns a pointer to the start of the allocated memory. If
size is zero, or if insufficient memory is available, it returns null.

Related functions

calloc, free, realloc

Example

♦include <stdlib.h>

♦include <errno.h>

char * buffer = malloc(512) ;

if (buffer)

{ /* Use buffer */

/* finished with buffer now, so release it */
free (buffer);

}
else

errno = ENOMEM; /* signal insufficient memory */

I

I

I

I

I

~y LIBRARY 139 malloc

memccpy

The memccpy function copies one block of memory to another, until a
particular character is found. It is not part of the draft ANSI standard.

Definition

♦include <string.h>
void *memccpy(void *sl, const void *s2,

int c, size t n);

Purpose

This function copies characters from the object pointed to by s2 to that
pointed to by si, until either n characters have been copied, or the value of
the last character copied was equal to c (converted to an unsigned char).
If the objects overlap, the results are undefined.

I
Returns

The memccpy function returns a pointer to the char immediately following
c, in string si, if copied, else NULL.

1

I
Example

♦include <string.h>

I

I

I

I

Related functions

memcpy, memmove, strcpy, strncpy

char a [26];

int ch;

/* Copy all letters up to ch into a */
memccpy(a, "abcdefghijklmnopqrstuvwxyz", ch, 26)

memchr 140 LIBRARY

memchr

The memchr function locates the first occurrence of a character in a block of
memory.

Definition

♦include <string.h>
void *memchr (const void *s, int c, size t n);

Purpose

This function searches the first n characters of the object pointed to by s for a
character whose value is equal to c (converted to an unsigned char).

Related functions

strchr

Example

♦include <string.h>

char buffer[512];

char *nl_ptr;

/* Convert newlines in buffer to null characters

(rather inefficiently) */
while ((nl_ptr = memchr (buffer, '\n', 511)) != NULL)

*nl_ptr = '\0';

i

i

i

i

i
Returns

The memchr function returns a pointer to the first occurrence of the
character, or null if no occurrence is found.

I

LIBRARY 141 memcmp

memcmp

The memcmp function compares two blocks of memory.

Definition

I

I

I

I

I

!

I

♦include <string.h>
int memcmp (const void *sl, const void *s2, size_t n);

Purpose

This function compares the first n characters of the objects pointed to by si
and s2.

Returns

The memcmp function returns an integer greater than, equal to or less than
zero, according to whether the object pointed to by si is respectively greater
than, equal to or less than that pointed to by s2. The comparison is made on the
basis of the first character position in which they differ, treating the characters
as unsigned.

Related functions

memicmp, strcmp, stricmp, strncmp, strnicmp

Example

♦include <string.h>

int arrayl[20];
int array2[20];

/* Arrays cannot be compared using the == operator, but
we can use memcmp to test if they are equal */

if (memcmp (arrayl, array2, 20*sizeof(int)) == 0)
puts ("Arrays are equal"),-

else

puts ("Arrays are not equal");

y memcpy 142 LIBRARY

memcpy

The memcpy function copies one block of memory to another.

Definition

♦include <string.h>
void *memcpy (void *sl, const void *s2, size_t n)

Purpose

This function copies the first n bytes of the object pointed to s2 to the object
pointed to by si. The objects should not overlap, or the result will be
undefined. Note that memmove can be used to copy objects which may overlap.

Returns

The memcpy function returns a pointer to the destination object, si.

Related functions

memmove, strcpy, strncpy, strdup

Example

♦include <string.h>

♦define linelength 80
char buffer [linelength];
char *screenptr;

/* Copy a line of a display to an array */

memcpy(buffer, screenptr, linelength);

I

I

y LIBRARY 143 memicmp

I

I

I

memicmp

The memicmp function compares two blocks of memory, ignoring case
differences. It is not part of the draft ANSI standard.

Definition

♦include <string.h>
int memicmp (const void *sl, const void *s2, size_t n);

Purpose

1

I

I

I

This function compares the first n characters of the objects pointed to by s 1
and s2, treating all letters as if they were upper case.

Returns

The memicmp function returns an integer greater than, equal to or less than
zero, according to whether the object pointed to by s 1 is respectively greater
than, equal to or less than that pointed to by s 2. The comparison is made on the
basis of the first character position in which they differ, treating the characters
as unsigned, and treating all letters as if they were upper case.

Related functions

memcmp, strcmp, stricmp, strncmp, strnicmp

Example

♦include <string.h>
♦include <assert.h>

I

I

I

I

char *sl, *s2;

si = "Hello World";

s2 = "HELLO world";

assert (memicmp (si, s2, 11) == 0);

/* Assertion should succeed */

memmove 144 LIBRARY

memmove

The memmove function copies one block of memory to another.

Definition

♦include <string.h>
void *memmove (void *sl, const void *s2, size t n) ;

I

Purpose

This function copies the first n bytes of the object pointed to s 2 to the object
pointed to by si. Unlike the memcpy function, memmove can be used to copy
objects which overlap, and will behave correctly. However, for objects which
are known not to overlap, memcpy is more efficient and faster.

Returns

The memmove function returns a pointer to the destination object, si.

Related functions

memcpy, strcpy, strncpy, strdup

Example

♦include <string.h>

♦define linelength 80
♦define lines 25

char *screenptr;

/* Reverse scroll a character mapped display */

memmove (screenptr + linelength, screenptr,
(lines-1) * linelength);

memset (screenptr, ' ', linelength);

I

I

I

i y LIBRARY 145 memset
1

memset

The memset function fills a block of memory with a character.

I

I

Definition

♦include <string.h>

void *memset (void *s, int c, size t n);

Purpose

This function sets the first n characters of the object pointed to by s to the
value c (converted to an unsigned char).

I

I

I

Returns

The memset function returns a pointer to the destination object, s.

Related functions

strset

Example

♦include <string.h>

/* Fill an array with zeros, quickly */

int s[100] ;

memset (s, 0, 100*sizeof (int));

I

I

I

I

mkdir 146 LIBRARY

mkdir
I

The mkdir function creates a subdirectory. It is not part of the draft ANSI
standard.

Definition

♦include <direct.h>

int mkdir (const char *pathname);

Purpose
I

This function creates a new directory with the name specified by
pathname. This may be either absolute or relative to the current default
directory. The new directory will be created on the current drive.

Note that to include a backslash character in a string literal, two backslashes
must be used, as the backslash character is used to introduce escape
sequences. A forward slash may be used in place of the backslash character
in pathname - it will be interpreted as if it were a backslash by the mkdir
function.

Returns

The mkdir function returns zero if the operation is successful. If the
specified pathname cannot be created, a non-zero value is returned, and
errno will be set to indicate the error (attempting to create a directory that
already exists gives the error EACCES).

Related functions

chdir, rmdir

Example

♦include <direct.h>

mkdir ("\\new"); /* new directory in root */
mkdir ("new"); /* new directory in current */

I

I

I

I

I

I

I

I

I

I

I

I

I

I

LIBRARY 147 mktime

mktime

The mkt ime function converts a broken down time to an encoded one.

Definition

♦include <time.h>

time t mktime (struct tm *timeptr)

Purpose

This function converts the broken down time in the structure pointed to by
t imept r into a calendar time, using the same encoding as that returned by the
time function. The values in the broken down time are adjusted in order to
bring them all into their standard ranges, and the day of the week
(t imept r->tm_wday) and of the year (t imeptr->tm_yday) are
recalculated from the other values in the structure. The broken down time
structure tm is defined in the t ime . h file.

Returns

The mktime function returns the encoded time, provided the (adjusted) year is
in the range 1980 to 2099. Otherwise the given time can not be represented in
the code used by the t ime function, and it returns (t ime_t) -1.

Related functions

localtime, time, gmtime

Example

♦ include -ctime.h>

/* What will the encoded time be in an hour ? */

time_t now, then;
struct tm *timeptr;

time(now); /* Get current time */
timeptr = localtime (Snow) /* break it down */
timeptr->tm_hour++; /* add an hour */
then = mktime (timeptr) /* and recode the time */

I

modf 148 LIBRARY

modf
i

The modf function breaks a floating point value into integral and fractional
parts.

Definition

♦include <math.h>

double modf (double value, double *iptr);

Purpose

This function divides the floating point value value into its integral and
fractional parts, each (if non-zero) having the same sign as value. The
integral part is stored in the object pointed to by ipt r .

Returns

The modf function returns the fractional part of value.

Related functions

frexp, fmod, floor, ceil

Example

♦include <math.h>

/* test whether a number is integral */

double integral, value;

if (modf(value, Sintegral) == 0.0)
puts("Value is integral");

else

puts("Value is not integral");

I

I~

I

I

I

I

[

I

I

I

I

I

I

I

I

I

LIBRARY 149 open

open

The open function opens an unbuffered file. It is not part of the draft ANSI
standard.

Definition

♦include <io.h>

int open (const char *filename, unsigned int access,
int prot);

Purpose

This function opens the file whose name is specified by filename. The mode in
which it is opened is governed by the value of the access parameter, which is
specified by combining one or more of the following values (defined in
fcntl.h) using the bitwise OR operator | :-

0_RDONLY The file is to be opened for reading only
0_wronly The file is to be opened for writing only
ORDWR The file is to be opened for both reading and writing.

Exactly one of the above must appear.
0_ndelay Not used, included only for compatibility
0_APPEND All write accesses start at end of file
0_CREAT The file is to be created if it does not exist
OJTRUNC The file is to be truncated to zero length if it exists
0_EXCL If o_CREAT is specified, the file must not already exist
0_text The file is to be opened in text mode

The prot parameter is only meaningful if 0_CREAT is specified, and gives the
file protection mode which the newly created file will be given. The possible
values are obtained by combining (using the bitwise OR operator) one or both
of the following values (also defined in f cntl. h) :-

S_iwrite The file is to be created with write permission
s_iread The file is to be created with read permission

Under GEMDOS, all files have read permission, so the modes S_iwrite and
SIWRITE | S_IREAD are identical. However, it is sensible to specify
Si read if read permission is required, to assist portability to other
operating systems.

~y open 150 LIBRARY
Returns

The open function returns the handle of the file. If an error occurs, -1 is
returned, and errno will be set to indicate the error.

Related functions

access, chmod, close, creat, dup, dup2, fopen

Example

♦include <io.h>

♦include <fcntl.h>

♦include <errno.h>

int handle;

/* create a new file */

I

I

I

I

handle = open ("newfile.dat",
0_WRONLY | 0_CREAT | 0_EXCL,
S_IREAD | S_IWRITE);

if (handle == -1) l

{ if (errno — EEXIST)

puts ("File already exists");
else

}

perror("Error creating file newfile.dat");
exit(3); '

y LIBRARY 151 perroi

I

perror

The perror function prints an error message.

Definition

♦include <stdio.h>

void perror (const char *s);

Purpose

This function prints an error message to the standard error stream. If s is not
NULL, the string it points to is printed first, followed by a colon and a space.
An error string describing the error number in errno is then printed - this is
the same string as returned by strerror with argument errno. Finally, a
new-line character is output.

I

I

I

I

I
stream = fopen("myfile.dat", "r");
if (stream == NULL)

1{ perror("Unable to open myfile.dat");

I

I

I

Returns

There is no return value.

Related functions

strerror

Example

♦include <stdio.h>

FILE *stream;

exit (3) ;

}

would output (if file cannot be found):-

Unable to open myfile.dat: File not found

* pow 152pow 152 LIBRARY

pow

The pow function raises a floating point value to a power.

Definition

♦include <math.h>

double pow (double x, double y);

Purpose

This function computes x raised to the power y.

Returns

The pow function returns x raised to the power of y. If the result is too large to
be represented as a double, a range error occurs. In this case, errno will be
set to ERANGE, and the value HUGE_VAL will be returned. If x is zero and y is
less than or equal to zero, or if x is negative and y is not an integer, a domain
error occurs. In this case, errno will be set to EDOM, and the value 0.0 will be
returned.

Related functions

frexp

Example

♦include <math.h>

♦include <sttdef.h> /* to define errno */

double d;

errno = 0;

for (d = 1.0; errno == 0; d *= 4.0)

printf("%g\n", pow (2.0, d));

will produce as output:-

2

16

65536

1.84467e+19

1.15792e+77

1.79769e+308

I

y LIBRARY 153 printf

I

I

I

I

I

I

I

printf

The printf function writes formatted output to standard output.

Definition

♦include <stdio.h>

int printf (const char *format, .. .) ;

Purpose

This function outputs characters to standard output, under the control of the
format string format. Additional arguments may be passed, and conversion
specifiers in the format string (described in detail below) will cause these
arguments to be converted and their ASCII representations output.

The format string consists of a number of directives, which take two forms.
The simple form of directive is an ordinary character (other than %), which
causes that character to be written to the output unmodified.

Conversion specifications start with a %character, followed in sequence by :-

1 Zero or more of the flag characters "+", "-", "0","" (space) or "#",
which modify the effect of the conversion as follows :-

"+" For signed numeric conversions, a positive number will
start with a + (negative numbers always have a sign).

For signed numeric conversions, a positive number will
start with a space. If both the space and "+" flags appear,
the space is ignored.

"0" For numeric conversions, zero characters are used to
pad to the field width (after any sign or indication of
base). If both the "0" and "-" flags appear, the "0" is
ignored.

I
If a field width is specified (see below), the output will
be left justified in the field. If this flag does not appear,
the output is right justified.

"#" An alternate form of the conversion is to be used. The

effect on each type of conversion is described
individually.

I

printf 154; LIBRARY

2 An optional decimal integer which gives the minimum field width. If
the output resulting from the conversion occupies less than this
number of characters, it will be padded on the left (or right if the
left-justify flag (-) was given). The padding is normally with spaces,
but if the zero flag was given, left padding is performed with zeros.
The decimal integer may be replaced by an asterisk, in which case the
next argument in the argument list is a signed int whose value is to be
used instead. A negative argument is treated as if it was a left-justify
flag followed by the corresponding positive argument.

3 An optional precision. This is introduced by a decimal point,
followed by a decimal integer. The decimal integer may be replaced
by an asterisk, meaning that the next argument in the argument list is
a signed int whose value is to be used instead. A negative argument is
treated as if it were missing.

4 An optional length specifier. This may be an "h", specifying that an
integer conversion is to treat the next argument as being short, an
"1", specifying that an integer conversion is to treat the next
argument as being long, or an "L", specifying that a floating point
conversion is to treat the next argument as being long double. If
no length is specified, integers are assumed to be plain, and floating
point values are assumed to be double. (Note that values of type
float will be converted to double before being passed).

5 A character specifying the conversion to be performed. These are
described in detail below.

"d", "i" An integer argument is converted to signed decimal notation. For all
integer conversions, the precision specifies the minimum number of
characters which appear, and leading zeros will be added if
necessary. If no precision is specified, 1 is assumed. Note that
outputting a zero value with zero precision results in no output.

"o" An integer argument is converted to unsigned octal notation. If the
"#" (alternate form) flag was given, the precision will be increased if
necessary to force the first character to be a zero.

"u" An integer argument is converted to unsigned decimal notation.

"x", "X" An integer argument is converted to unsigned hexadecimal notation.
Lower case letters are used for "x" conversion, and upper case for
"X". If the "#" (alternate form) flag was given, and the value is not
zero, the characters "Ox" or "OX" will be prepended to the output.

I

r

i

i

i

i

i

i

i

i

I

I

I

I

I

LIBRARY 155 printf

"e","E" A floating point value is converted to scientific decimal notation, of
the form [-]d.dddddde±dd. The precision specifies the number of
characters to appear after the decimal point - if no precision is given,
it is assumed to be 6. If the precision is zero, no decimal point will be
output, unless the "#" (alternate form) flag was specified. The digit
before the decimal point is not zero unless the value is zero. The
exponent sign and at least two exponent digits are always output. The
value is rounded to the appropriate number of places. The "E" form
differs from the "e" form only in that the letter "E" is used to
introduce the exponent rather than the letter "e".

"f" A floating point value is converted to fixed point decimal notation.
The precision specifies the number of characters to appear after the
decimal point - if no precision is given, it is assumed to be 6. If the
precision is zero, no decimal point will be output, unless the "#"
(alternate form) flag was specified. At least one digit will always be
output before the decimal point. The value is rounded to the
appropriate number of places.

"g","G" A floating point value is converted using either the "e" (or "E" for
"G" conversion) or "f' style, depending on the magnitude of the
value. The precision specifies the number of significant digits - if no
precision is given, it is assumed to be 6, and if a precision of zero is
given, it is treated as one. The "e" form is used if the exponent
resulting from the conversion is less than -4 or greater than or equal
to the precision, otherwise the "f form is used. Unless the "#"
(alternate form) flag is specified, trailing zeros are removed from
the result, and a decimal point appears only if it is followed by a
digit.

"c" An argument of type int is converted to an unsigned char, and
the corresponding character is output.

"s" An argument of type char * is consumed. Characters from the
string it points to are output, until either the number of characters
output is equal to the precision (if specified), or the end of the string
is reached. The terminating null is not written.

An argument of type void * is converted to an unsigned long
integer, and output in the same form as for the "x" conversion,
except that the characters "Ox" are prepended to the result whether or
not the "#" flag was specified.

No output is performed. An argument of type pointer to integer is
consumed, and the number of characters so far written by this call of
printf is stored in the unsigned integer to which it points. The size
of the integer is determined by the length flags described earlier.

printf 156 LIBRARY

"%" A percent character is written. No argument is consumed. No other
options may precede the %.

If an invalid conversion specification is encountered, the rest of the format
string will be output without attempting to recognize conversion specifiers.

Returns

The printf function returns the number of characters output. If an output
error occurred, a negative value is returned, and errno will be set to indicate
the error.

Related functions

fprintf, sprintf, vfprintf, vprintf, vsprintf, scanf

Example

♦include <stdio.h>

int c = 'A';

double d = 3.14e-25;

char *s = "Hello";

printf ("c has value %d, and as a character is %c\n",
c, (char) c);

printf ("d is %.2g to 2 s.f. but %.2e to 2 d.p.Xn",
d, d) ;

printf ("%10s %.2s\n", s, s);

will produce:-

c has value 65, and as a character is A
d is 3.1 to 2.s.f but %.2e to 2 d.p.

Hello He

I

I

I

LIBRARY 157 putc

putc

The putc function writes a character to a stream.

Definition

♦include <stdio.h>

int putc (int c, FILE *stream);

Purpose

This function writes the character c to the stream described by stream. It is
equivalent to fputc, except that many C compilers (but not Prospero C)
implement it as an unsafe macro (the argument stream may be evaluated
twice, including possible side effects).

I

[

I

I

I

I

I

I

Returns

The putc function returns the character written. If a write error occurs, EOF
is returned and the file error flag and errno will be set.

This function is declared as a macro in stdio . h, but if this is not
♦ included, or if putc is ♦undef'd, a library function will be called.

Related functions

fputc, putchar, fputs

Example

♦include <stdio.h>

int errors;

FILE *logfile;

fprintf(logfile, "%d error", errors);
if (errors != 1)

putc('s', logfile);
fprintf (logfile, " in Pass l\n");

I

putch 158 LIBRARY

putch

The putch function writes a character to the console. It is not part of the draft
ANSI standard.

Definition

♦include <conio.h>

int putch (int c);

Purpose

This function writes the character c (converted to a char) to the console.

Returns

The putch function retums the character written.

Related functions

getch, getche, ungetch

Example

♦include <conio.h>

char *p;

for (p = "Hello"; *p; p++)
putch (*p);

I

I"

I

I

I

I

I

LIBRARY 159 putchar

putchar

The putchar function writes a character to standard output.

Definition

♦include <stdio.h>

int putchar (int c) ;

Purpose

This function writes the character c to the standard output stream. It is
equivalent to putc with stdout as the second argument.

This function is declared as a macro in stdio.h, but if this is not
♦ included, or if putchar is ♦undef'd, a library function will be called.

Returns

The putchar function returns the character written. If a write error occurs,
EOF is returned and the file error flag and errno will be set.

I

I

I

I

I

I

Related functions

fputc, putc, fputs

Example

♦include <stdio.h>

int errors;

printf("%d error", errors);
if (errors != 1)

putchar ('s ');
printf (" in Pass l\n");

~y puts 160 LIBRARY

puts
The put s function writes a string of characters to standard output.

Definition

♦include <stdio.h>

int puts (const char *s);

Purpose

This function writes the string of characters pointed to by s to the standard
output stream, up to but not including the terminating null byte. A new-line
character is then written to standard output.

Returns

The puts function returns zero if successful. If a write error occurs, a non
zero value is returned, and the stream's error indicator and errno will be set.

Related functions

fputs, fputc, putc

Example

♦include <stdio.h>

/* Output the sign-on message */

puts("Prospero C Cross referencer version mg 1.1");
puts("Copyright (C) 1988 Prospero Software");

i

i

i

i

I

i

i

!

I

I

I

LIBRARY 161 qsort

qsort 3
The qsort function sorts an array of objects.

Definition

♦include <stdlib.h>

void qsort (void *base, size_t nmemb, size_t size,
int (*compar) (const void *, const void *));

Purpose

This function sorts nmemb members of the array pointed to by base into
ascending order, using the Quicksort algorithm. The size of each object in
the array is specified by the parameter size, and the comparisons are done
on the basis of the values returned by the function pointed to by the
parameter compar. This function is called by qsort with pointers to two
members of the array as arguments, and should return an integer less than,
equal to or greater than zero, according to whether the member pointed to
by the first argument is considered respectively less than, equal to or greater
than that pointed to by the second. If two members are equal according to
the compar function, the order in which they appear in the sorted array
will not necessarily be the same as that in the original.

Returns

There is no return value.

Related functions

bsearch

~y qsort 162 LIBRARY
Example

♦include <stdlib.h>

struct person {char surname[20];

char first_name[20];
int year_of_birth; };

int compare_names (const void *vl, const void *v2)
{ struct person *pl = (struct person *) vl,

*p2 = (struct person *) v2;
int order;

order = strcmp(pl->surname, p2->surname);
if (order == 0)

{ /* Surnames are the same - compare first names */
order = strcmp(pl->first_name, p2->first_name);
if (order == 0)

/* First names are the same too - compare ages */
order = pl->year_of_birth - p2->year_of_birth;

}
return order;

}

main ()

{ struct person people[100];
/* Set up info about 100 people */

_/* Now sort into ascending order of surname */
qsort(people, 100, sizeof(struct person),

compare_names) ;

/* Now print out the data etc */

}

!

1

I

1

I

I

I

I

LIBRARY 163 raise

raise

The raise function causes an exception to be generated.

Definition

♦include <signal.h>
int raise (int sig);

Purpose

This function sends the signal specified by sig to the executing program. This
should be one of the values defined in the signal. h header file. The signal
function can be used to control what the effect of each exception is.

Returns

The raise function returns zero if successful, otherwise non-zero.

Related functions

signal

Example

♦include <signal.h>

/* Raise a floating point exception */

raise (SIG FPE);

rand 164 LIBRARY

rand

The rand function generates a random number.

Definition

♦include <stdlib.h>
int rand (void);

Purpose

This function calculates the next number in a pseudo-random sequence, in the
range 0 to RAND_MAX. RAND_MAX is defined in stdlib. h, and in Prospero C
is equal to 32767. The starting pointof the sequence can be set using the srand
function - at program startup the seed will be zero.

Returns

The rand function returns the pseudo-random number.

Related functions

srand

Example

♦include <stdlib.h>

if (rand() > 0x3fff)
puts("Heads");

else

puts("Tails");

I
LIBRARY 165 read

read

The read function reads data from an unbuffered file. It is not part of the
draft ANSI standard.

Definition

♦include <io.h>

long int read (int handle, void *buffer,
long int length);

Purpose

This function reads up to length bytes, from the file whose handle is given
by handle into the object pointed to by buffer. If the file was opened in
text mode, carriage returns in the input will be removed, and will not be
counted towards the number of bytes read.

Returns

The read function returns the number of bytes read into buffer - this
may be less than length if end-of-file was encountered. If an error
occurred, it returns -1L, and errno will be set to indicate the error.

I Related functions

open, fread, fwrite, read, write

read 166 LIBRARY

Example

♦include <io.h>

int handle;

char screenimage [32768];

handle = open("screenl.dmp", 0_RDWR, 0);
if (handle == 0)

perror("Can't open dump file");
else

{ unsigned int ret = read (handle, screenimage, 32768);
if (ret != 32768)
{ if (ret == Oxffff)

perror("Error reading dump file");
else

fputs("Dump file format error", stderr);
exit (3) ;

}
/* Now process screen image */

}

LIBRARY 167 _read

_read I
The _read function reads data from an unbuffered file. It is not part of the
draft ANSI standard.

Definition

♦include <io.h>

long int _read (int handle, void *buffer,
long int length);

Purpose

This function reads up to length bytes, from the file whose handle is given
by handle into the object pointed to by buffer. This function makes a
direct call to GEMDOS, without any translation of carriage returns for text
files, and without setting errno if errors are detected.

This function is defined as a macro in i o . h, but if i o . h is not
♦ included, or if _read is ♦undef'd, a library function will be called.

Returns

The _read function returns the number of bytes read into buffer - this
may be less than length if end-of-file was encountered. If an error
occurred, it returns a negative GEMDOS error code, equal in magnitude to
one of the positive error codes defined in errno . h.

Related functions

open, fread, fwrite, read, write, _write

_read 168 LIBRARY

Example

♦include <io.h>

int handlel, handle2;
char *fileimage;
long bytes;

/* Duplicate a file */
handlel = open("filel", 0_RDONLY, 0);
handle2 = open("file2", 0_WRONLY | 0_CREAT | 0_TRUNC,

S IREAD | S IWRITE);

bytes = filelength(handlel);
fileimage = malloc (bytes);
if (fileimage != NULL)
{ _read(handlel, fileimage, bytes);
_write(handle2, fileimage, bytes);

}

else puts("Insufficient memory");

i

i

i

i

i

i

i

i

i

i

i

i

LIBRARY 169 realloc

realloc

The realloc function changes the size of an allocated memory block.

Definition

♦include <stdlib.h>

void *realloc (void *ptr, size_t

Purpose

If ptr is null, the realloc function behaves like the malloc function with the
parameter size. Otherwise, ptr should point to a memory block previously
allocated using malloc, and the size of this block will be altered to size
bytes. The first n bytes of the object will be unchanged, where n is the lesser of
the old and new sizes. Changing the size to zero will result in the block being
freed.

Returns

The realloc function returns a pointer to the start of the resized memory
block. If the object is being increased in size, this pointer may not be the same
as the original pointer, and any copies of the original pointer will no longer be
valid. If insufficient memory is available, realloc returns NULL, and the
original block pointed to by ptr is unchanged. If size is zero, it returns NULL,
and the original block pointed to by pt r is freed.

Related functions

calloc, free, malloc

Example

♦include <stdlib.h>

♦include <string.h>
char *save_name, *name;

save name = strdup (name); /* save a copy of name */
/* Get next name */

/* Save copy of name, reusing space from last */
save_name = realloc(save_name, strlen(name) + 1);
strcpy(save_name, name);

remove 170 LIBRARY

remove

The remove function deletes a file from disk.

Definition

♦include <stdio.h>

int remove (const char *filename);

Purpose

This function deletes the file specified by the filename parameter.

Returns

The remove function returns zero if successful. Otherwise, it returns non
zero, and errno will be set to indicate the error.

Related functions

rename, tmpfile

Example

♦include <stdio.h>

if (remove("workfile.$$$"))
perror("Unable to remove workfile");

I

I

I

I

I

LIBRARY 171 rename

rename

The rename function renames a file on disk.

Definition

♦include <stdio.h>

int rename (const char *old, const char *new);

Purpose

This function renames the file whose name is given by old to the name given
by new.

Returns

The rename function returns zero if successful. If an error occurred, it
returns non-zero, and errno will be set to indicate the error. Possible causes
of failure include a file called new already existing, a file called old not being
found, or old and new referring to different drives or directories. If the
named file is currently open, any stream associated with the old name will now
be associated with the new name, and no error shall result.

Related functions

remove

Example

♦include <stdio.h>

if (rename ("editfile.c", "editfile.bak"))
perror("Unable to create backup file");

rewind 172 LIBRARY

rewind
The rewind function restores a stream's position to the start of a file.

Definition

♦include <stdio.h>

void rewind (FILE *stream) ;

Purpose

This function sets the file position of the file associated with stream to the start
of the file, and clears the stream's error and end-of-file indicators. If the file
was opened in update mode, the next operation after a call of rewind may be
either input or output.

Returns

There is no return value.

Related functions

fseek, fsetpos

Example

♦include <stdio.h>

FILE *stream;

/* create a file */

stream = fopen("myfile","w+b");

/* write lots of data to it */

/* Go back to the start */

rewind(stream);

/* Now we can read the data back */

i

I

I

I

LIBRARY 173 rmdir

rmdir

The rmdir function removes a subdirectory. It is not part of the draft ANSI
standard.

Definition

♦include <direct.h>

int rmdir (const char *pathname);

Purpose

This function removes the directory with the name specified by pathname.
This may be either absolute or relative to the current default directory. The
directory can only be removed from the current drive.

Note that to include a backslash character in a string literal, two backslashes
must be used, as the backslash character is used to introduce escape
sequences. A forward slash may be used in place of the backslash character
in pathname - this will be interpreted as if tit was a backslash by the
rmdir function.

Returns

The rmdir function returns zero if the operation is successful. If the
specified directory cannot be removed, a non-zero value is returned, and
errno will be set to indicate the error. Note that a directory which is not
empty, or which is the current directory, cannot be removed.

Related functions

chdir, mkdir

Example

♦include <direct.h>

rmdir ("Wold"); /* delete directory in root */
rmdir ("old"); /* delete directory in current */

scanf 174 LIBRARY

scanf
The scanf function reads formatted input from standard input.

Definition

♦include <stdio.h>

int scanf (const char *format, ...);

Purpose

This function reads formatted input from standard input, under the control of
the format string format. Additional pointer arguments may be passed, and
conversion specifiers in the format string (described in detail below) will cause
input items to be to be converted and their values assigned to the objects
pointed to by these arguments.

The format string consists of a number of directives, each of which specifies
the form of the expected input. The directives are processed in turn, until one
fails - this can be due to no more input being available (an input failure) or the
input characters being inappropriate (a matching error). There are three types
of directive :-

A directive which consists of white space (as defined by the isspace
function) causes input to be read up to but not including the first non-space
character, or until no more characters are available.

A directive which consists of an ordinary character (other than %) causes the
next input character to be read, and fails with a matching error if the character
is not the same as that forming the directive.

Directives which start with % are conversion specifiers. After the %
character, the following appear in sequence :-.

An optional *, indicating that the value resulting from the
conversion is not to be assigned to an object.

An optional decimal integer which gives the maximum field width.
No more than this number of input characters will be read.

I

I

I

I

I

I

I

I

I

I

I

LIBRARY 175 scanf

3 An optional character indicating the size of the object which is to
receive the converted value. For integer conversions, an "h" length
specifier indicates that the corresponding argument is a pointer to a
short int, while an "1" indicates it is a pointer to long int; for
floating point conversions, an "1" length specifier indicates that the
corresponding argument is a pointer to a double, while an "L"
indicates it is a pointer to long double. If no length specifier is
given, integer conversions assume the pointer is to a plain int, and
floating point conversions that it is to a float.

4 A character specifying the conversion to be performed. These are
described in detail below. Each conversion is performed in the
following steps (except where indicated in the individual
descriptions) :-

White space characters in the input are skipped.

Characters are read from the input until the maximum field width (if
given) is reached, no more characters are available, or the next input
character (which is left unread) is not valid in the corresponding
position of an item of the specified form. If no characters can be read
(other than the initial white space), the directive fails. This is a
matching failure, unless a read error prevented characters being read
from standard input, in which case it is an input failure.

The characters read above are converted into a value of the
appropriate type. If they are not a matching sequence, a match failure
occurs. If the vale is too large to be represented, the resulting value
will be undefined.

Unless the assignment suppressing flag * was given, the result of the
conversion is placed in the object pointed to by the next argument
after format which has not yet been used. If this does not point to an
object of appropriate type, the result will be undefined.

The valid conversion specification characters are as follows :-

"d" Matches an optionally signed decimal integer, in the same format as
for the strtol function with base 10.

"i" Matches an optionally signed integer, in the same format as for the
strtol function with base 0. The radix of the integer is
determined by the initial characters.

"o" Matches an unsigned octal integer, in the same format as for the
strtoul function with base 8.

scanf 176 LIBRARY

"u" Matches an unsigned integer, in the same format as for the strtoul
function with base 10.

"x", "X" Matches an unsigned hexadecimal integer, in the same format as for
the strtoul function with base 16.

"e","E","f',"g","G"
Matches an optionally signed floating point value, in the same format
as for the strtod function.

"c" Matches a sequence of characters whose length is as specified by the
field width, or 1 if no field width is given. Initial white-space
characters are not skipped. The corresponding argument should be a
pointer to the start of an array of characters large enough to hold the
sequence. No null character is appended to the array.

"s" Matches a sequence of non-whitespace characters. The argument
should be a pointer to the start of an array of characters large enough
to hold the sequence, and a null character which is appended to the
sequence automatically.

"[" Matches a non-empty sequence of characters from a set of characters
defined by the format string as described below. Initial white-space
characters are not skipped. The corresponding argument should be a
pointer to the start of an array of characters large enough to hold the
sequence, plus a null character which is appended automatically.

The characters which follow the "[" character in the format string,
up to and including the matching "]" character, form part of the
directive, and the characters between the brackets (the scanset)
indicate those characters which will be matched by the directive,
unless the first character after the "[" is a "A", in which case the
directive will match any character except those in the scanset
following the "A". As a special case, if the"[" is followed immediately
by a "]" or by "A]", the "]" character is considered to be part of the
scanset, and the next"]" will be considered to mark the end.

"p" Matches an argument in the same form as that output by printf
using the %p directive (a hexadecimal constant starting with the
characters "Ox"). The value is converted to a pointer to void, and
the corresponding argument should be a pointer to pointer to void.
If the value read in is not a value written out using print f earlier in
the same invocation of the program, it is likely to be meaningless and
lead to undefined behavior.

"n" No input characters are read, and white space is not skipped. The
corresponding argument should be of type pointer to integer, and the
number of input characters so far read by this call of scanf is stored

I

I

y LIBRARY 177 scanf
in the unsigned integer to which it points. The size of the integer is
determined by the length specifier described earlier. A %n directive
is not included in the count of successful assignments returned by
scanf.

"%" Matches a % character. No whitespace is skipped, and no argument is
consumed. The complete conversion specifier should be %%,
without any flags or fieldwidth.

If an invalid conversion specification is encountered, the rest of the format
string will be ignored.

Returns

The scanf function returns the number of input items assigned, which may be
less than the number provided for or zero if a match failure occurs. If an input
failure occurs before any conversion, EOF is returned.

Related functions

fscanf, sscanf, printf

I

I
Example

♦include <stdio.h>

I

I

char name[20];
int age;

printf ("Enter your name and age\n");
scanf ("%19s%*[/s ,\n]%d\n", name, Sage);

will accept

Fred 22

Bloggs,23

or the name and age on separate lines.

I

I

setbuf 178 LIBRARY

setbuf

The setbuf function allows the buffer for a stream to be specified.

Definition

♦include <stdio.h>

void setbuf (FILE *stream, char *buf);

Purpose

This function specifies that the array pointed to by bu f is to be used as the
buffer for input and output to the file specified by stream. The size of the
array should be at least BUFSIZ bytes (defined in stdio. h), and must remain
in existence at leastas long as the file is open. If buf is null, input andoutput
to the file stream will be unbuffered. The setbuf function must be called
after the file has been opened, but before any input or output to the file has
taken place.

This function is equivalent to the setvbuf function with mode equal to
_I0FBF and size equal to BUFSIZ, or if buf is NULL, with mode equal to

IONBF.

Returns

There is no return value.

Related functions

setvbuf, fopen

Example

♦include <stdio.h>

FILE * stream = fopen("data", "wb+")
void * buffer = malloc (BUFSIZ);

setbuf (stream, buffer);

/* file output is now buffered */

free (buffer);

LIBRARY 179 setdisk

setdisk

The setdisk function sets the default drive. It is not part of the draft ANSI
standard.

Definition

♦include <direct.h>

int setdisk (int drive);

Purpose

This function is used to set the default drive to that specified by the parameter
drive, where 0 means drive A, 1 means drive B, and so on.

Returns

The setdisk function returns the previous default drive, in the same format.
A negative value indicates an error, and errno will be set. Notehowever that
GEMDOS does not give an error if a non-existent drive is nominated, but will
instead fail on the next attempt to open or create a file. The drives that are
available can be found using the function drivemap.

Related functions

chdir, drivemap, getdisk

I

I
Example

♦include <direct.h>

♦include <ctype.h>

I

I

I

I

char drive; /* The drive letter */

if (isalpha(drive))
setdisk (toupper (drive) - 'A');

' setjmp 180 LIBRARY

setjmp
The setjmp function saves the program execution state.

Definition

♦include <setjmp.h>
int setjmp (jmp_buf env);

Purpose

This function saves the current program execution environment in jmpbuf.
A subsequent call of longjmp with jmp_buf as its first parameter will
restore the program counter, stack pointer, and registers to the values stored at
the time when setjmp was called, causing execution to continue as if the call
of set jmp had returned.

This function is typically used to allow an error occurring in deeply nested
functions to return quickly and simply to a high level routine where the error
can be reported and suitable action taken.

Returns

The setjmp function returns zero to indicate a direct return from the
function call. When a call of longjmp causes the return from setjmp, the
value returned is the integerpassed in the val parameter when longjmp was
called, or one if the val parameterwas zero.

Related functions

longjmp

I

I

I

I

I

I

I

I

I

I

I

I

r LIBRARY 181 setjmp

Example

♦include <setjmp.h>

jmp_buf error;

main ()

{ switch (setjmp(error))
{ case 0: /* No error yet */

calculate();

puts("Program completed successfully");
exit (0);

case 1: puts ("Unable to open input file");
break;

case 2: puts("Invalid input");
break;

/* Etc */

I exit (3); /* indicate an error */

}

void calculate()

{ FILE *input = fopen("input.dat","r");
if (input == NULL)

longjmp (error, 1);

if (invalid)

longjmp (error, 2);

/* etc */

}

setlocale 182 LIBRARY

setlocale

The setlocale function is used to change or find the current locale.

Definition

♦include <locale.h>

char *setlocale (int category, const char *locale);

Purpose

This function enables the current locale to changed. The locale string is used
to define the new locale. In Prospero C, this may be either "C" or"", both
meaning the standard C locale. Passing null for this parameter means that the
locale is not changed, but that the current locale can be found. On startup all
parts of the locale use the standard C locale.

The parameter category is used to define what parts of the locale are to be
altered. The following macros (defined in locale. h) may be used:-

Category Effect on Locale

LC_ALL affects all parts of the locale.
LC_COLLATE affects the behavior of the strcoll function.
LC_CTYPE affects the behavior of the character handling functions.
LC_NUMERIC affects the decimal point character in formatted input/output

functions, and the string conversion functions.
LC_TIME affects the behavior of the strftime function.

Note that as only the C locale is supported, no observable effect on functions is
produced by setlocale.

Returns

The setlocale function returns the string for the specified category if
locale was a string pointer. If locale was a NULL pointer, then a pointer to
the string for the specified category under the current locale is returned. If
category was LC_ALL then a null pointer is returned, unless the most recent
call to set the locale also used LC_ALL for the category. The string returned
maybe overwritten by subsequent calls to setlocale.

Related functions

printf, scanf, strftime

I

I

I

I

I

I

I

I

I

I

I

[

LIBRARY 183 setlocale

Example

♦include <locale.h>

/* Restore standard locale */

setlocale (LC ALL, "C");

setvbuf 184 LIBRARY

setvbuf

The setvbuf function allows the buffering of a stream to be controlled.

Definition

♦include <stdio.h>

int setvbuf (FILE *stream, char *buf,
int mode, size t size);

Purpose

This function is used after opening a stream, but before any input or output has
been made, to control how input and output to the file specified by stream
will be buffered. The mode argument should be one of the following values
(declared as macros in stdio. h) :-

Mode Meaning

_iofbf Input/output is fully buffered
_IOLBF Input/output is line buffered (the buffer is flushed when full or

when a newline character is output, or when input is requested).
_I0NBF Input/output is completely unbuffered.

The parameter size specifies the size of the buffer (in bytes). If the parameter
buf is not NULL, the array to which it points will be used as the buffer - note
that this should be aligned on an even word boundary, and must stay in
existence for as long as the stream is open. If buf is null, a buffer of size
size bytes will be automatically allocated, and released when the file is
closed.

Returns

The setvbuf function returns zero if successful. If the request is invalid or
cannot be met, a non-zero result is returned, and errno may be set.

Related functions

setbuf, fopen

y LIBRARY 185 setvbuf

I

I

I

I

I

I

I

I

I

I

I

I

I

I

Example

♦include <stdio.h>

long int bufsize = 16384;

main ()

{ FILE *stream = fopen ("text", "w+");

void *buffer = malloc (bufsize);

setvbuf (stream, buffer, _IOLBF, bufsize);

/* file output is now buffered */

free (buffer) ;

signal 186 LIBRARY

signal
The signal function controls how signals raised by the raise function are
processed.

Definition

♦include <signal.h>
void (*signal (int sig, void (*func) (int))) (int);

Purpose

This function causes the signal specified by s ig to be handled in one of three
ways. If the parameter func is equal to SIG_IGN, the signal will be ignored.
If func is SIG_DFL (both these are macros defined in signal. h), the signal
will be handled in the default manner. Otherwise, func should be a pointer to
a function taking a single int parameter and returning void. In this case,
when a signal occurs, first the handling of that signal is restored to its default
by the equivalent ofsignal(sig, SI G_DFL), then the function pointed to
by func will be called with its parameter defining the signal.

The permitted values of sig, and their meanings, are as follows:-

Signal Meaning

SIGABRT Abnormal program termination (e.g., the abort function is called)
SIGFPE Erroneous arithmetic operation (e.g. overflow or zero divide).
SIGILL Detection of an illegal function image.
SIGI NT Receipt of an interactive attention signal
SIGSEGV Invalid memory access
sigterm Receipt of a termination request.

The above macros, which are defined in signal . h, originate in UNIX
systems. Prospero C does not generate any of the above signals, except when
the raise function is called (either explicitly or by calling abort). At
program startup, all signals are handled in the default manner, which is
SIG DFL.

Returns

The signal function returns the value of func corresponding to the
previously installed handler for the given signal. If the request is invalid or
cannot be met, the value of the macro SIG_ERR (defined in signal. h) is
returned, and errno will be set.

I

I

I

I

I

1

I

i

I

i

LIBRARY 187 signal

Related functions

raise

Example

♦include <signal.h>
♦include <stdio.h>

void notify (int ignored)
{ printf ("Program about to abort, press RETURN");

scanf ("");

}

signal (SIGABRT, Snotify);

sin 188 LIBRARY

sm

The sin function computes the sine of a value.

Definition

♦include <math.h>

double sin (double x);

Purpose

This function computes the sine of x (in radians). If the value of x is large, the
result may lose some or all significance (returning zero). This will not cause
errno to be set.

Returns

The sin function returns the sine, in the range -1 to 1.

Related functions

cos, tan

Example

♦include <math.h>

printf ("sin pi = %f\n", sin (3.141592 654)

I

1

I
i

!

I

I

I

I

I

LIBRARY 189 sinh

sinh

The s inh function computes the hyperbolic sine of a value.

Definition

♦include <math.h>

double sinh (double x)

Purpose

This function computes the hyperbolic sine of x. If the value of x is too large
for the result to be represented, a range error occurs. In this case, errno will
be set to the vale ERANGE, and the value ±HUGE_VAL will be returned,
according to the sign of the true result.

Returns

The sinh function returns the hyperbolic sine.

Related functions

cosh, tanh

Example

♦include <math.h>

printf ("sinh 1 = %f\n", sinh (1.0));

sleep 190 LIBRARY

sleep
The sleep function causes execution to be suspended for a time. It is not part
of the draft ANSI standard.

Definition

♦include <process.h>
void sleep (unsigned int seconds);

Purpose

This function causes execution to be suspended until the number of seconds
specified have elapsed. It is preferable to a delay loop as the delay period will
be constant on different machines.

Returns

There is no return value.

Related functions

clock

Example

♦include <process.h>

/* Wait for ten seconds */

sleep(10);

I

I

I

I

I

I

I

LIBRARY 191 spawn

spawn

The spawnl and related functions transfer execution to another program.
They are not part of the draft ANSI standard.

Definition

♦include <pro
int spawnl (
int spawnle (
int spawnlp (
int spawnlpe(
int spawnv (

int spawnve (

int spawnvp (

int spawnvpe(

cess.h>

int mode, const char *path, ...)
int mode, const char *path, ...)
int mode, const char *path, ...)
int mode, const char *path, ...)
int mode, const char *path,
const char **args);
int mode, const char *path,
const char **args, const char **envp)
int mode, const char *path,

const char **args);

int mode, const char *path,
const char **args, const char **envp)

Purpose

These functions load and execute the program whose name is given by path as
a child process. When the child process terminates, control returns to the
calling program. The functions differ in the way that information is made
available to the child process. This information falls into two categories, the
environment, and the program arguments.

The program arguments are the strings which are passed to the child process's
main function in the argv array. By convention, the first of these should be
the name of the program. Under GEMDOS this is not available to the executed
program, and argv [0] will point to the empty string " ". In the functions
spawnl, spawnle, spawnlp and spawnlpe, pointers to the program
arguments are passed as the second and subsequent parameters, with a NULL
pointer being used to indicate the end of the list. In the functions spawnv,
spawnve, spawnvp and spawnvpe, the pointers to the program arguments
are stored in an array (with a NULL pointer marking the end of the array), and
a pointer to this array is passed in the argument args.

The environment is a collection of strings of the form VARIABLE=VALUE,
which may be read using the getenv function. Normally a program's
environment is the same as that of the program which executed it. However,
the functions spawnle, spawnlpe, spawnve and spawnvpe allow a new
environment to be specified. These are specified by storing the pointers to

~y spawn 192 LIBRARY
strings of the correct form in an array (with a NULL pointer marking the end
of the array), and a pointer to this array is passed in the final argument to the
function.

The final variation in these functions concerns how the program to be executed
is located. All the functions will look for a file of the given name - if no
extension is specified they will attempt to locate it with (in order) no extension,
then the extensions .PRG, .TTP, TOS. If the program has still not been
located, and the filename does not specify a drive or pathname, then the
spawnlp, spawnlpe, spawnvp and spawnvpe functions will also search
(using the same extensions as above) in all directories given by the PATH
environment variable.

The mode parameter specifies where the child program should be loaded. If
the value is P_WAIT, the child is loaded into memory above the parent, and
execution of the parent resumes when the child terminates. If the value is
P_OVERLAY (these macros are defined in process .h), the child overwrites
the parent process. Only the P_WAIT mode is currently supported by Prospero
C under GEMDOS, and any other value of mode will cause an error.

Returns

If the specified file is successfully found and executed, the return value will be
the return code specified by the program when it terminated. For C coded
child programs, this is the value returned by its main function or specified as
the parameter to exit, or the value EXIT_FAILURE if the program
terminated by calling abort. If an error occurs, -1 is returned, and errno
will be set.

Related functions

exit, abort

I

I

LIBRARY 193 spawn

Example

The following all pass the arguments "argl" and "arg2" to the program
"child".

♦include <process.h>

char *environ[] = { "LIB=C:\" , "INCLUDE=C:\H", NULL };
char *args[] = { "child", "argl", "arg2", NULL};

spawnl (P_WAIT, "child","child","argl","arg2", NULL);
spawnle (P_WAIT, "child","child","argl","arg2", NULL,

environ);

spawnlp (P_WAIT, "child","child","argl","arg2", NULL);
spawnlpe(P_WAIT, "child","child","argl","arg2", NULL,

environ);

spawnv (P_WAIT, "child", args);
spawnve (P_WAIT, "child", args, environ);
spawnvp (P_WAIT, "child", args);
spawnvpe(P_WAIT, "child", args, environ);

* sprintf 194 LIBRARY

sprintf
The sprintf function writes formatted output to a string.

Definition

♦include <stdio.h>

int sprintf (char *s, const char *format, ...);

Purpose

This function writes a string of characters controlled by the string pointed to
by format into the character array pointed to by s, followed by a null
character. See the description of the function printf for details on the
format string. The function takes a variable number of arguments - the type
and number of the arguments after the format argument is determined by the
layout of the string pointed to by format.

Returns

The sprintf function returns the number of characters written to the string,
not including the terminating null character.

Related functions

fprintf, vfprintf, vprintf, vsprintf

Example

♦include <stdio.h>

char buffer[100];

char *day = "Tuesday";

spintf (buffer, "Today is %s", day);

I

I

I

LIBRARY 195 sqjj_

sqrt

The sqrt function computes the square rootof a non-negative number.

Definition

♦include <math.h>

double sqrt (double x)

Purpose

This function calculates the non-negative square root of its argument x.

Returns

The sqrt function returns the square root. If x is negative, a domain error
occurs - the value 0.0 is returned, and errno will be set to EDOM.

Related functions

pow, log

Example

♦include <math.h>

double adj = 3.0;
double opp = 4.0;

double hyp = sqrt ((adj * adj) + (opp * opp));

srand 196 LIBRARY

srand

The srand function sets theseed for the random number generator.

Definition

♦include <stdlib.h>
void srand (int seed);

Purpose

This function sets the starting point of the pseudo-random sequence generated
by therand function to be seed - at program startup the seed will be zero, and
calling srand with seed zero will cause thesame sequence of numbers tobe
generated aswould be if rand was called at the startof the program.

Returns

There is no return value.

Related functions

rand

Example

♦include <stdlib.h>
int heads = 0, tails = 0;
srand(5);

if (rand() > 0x3fff)
heads++;

else

tails++;

srand(5);

if (rand() > 0x3fff)
heads—;

else

tails—;

/* Both heads and tails will now be zero */

I

I

I

I

I

I

I

I

i

I

LIBRARY 197 sscanf

sscanf

The scanf function reads formatted input from a string.

Definition

♦include <stdio.h>

int sscanf (const char *s, const char *format, ...);

Purpose

This function reads formatted input from the string s, under the control of the
format string format. Additional pointer arguments may be passed, and
conversion specifiers in the format string (described in detail in the function
scanf) will cause input items to be to be converted and their values assigned
to the objects pointed to by these arguments.

The sscanf function is equivalent to scanf, except that the input is obtained
from the string s rather than from standard input, and encountering the end of
the string is equivalent to encountering end-of-file in scanf.

Returns

The scanf function returns the number of input items assigned, which may be
less than the number provided for or zero if a match failure occurs. If an input
failure occurs before any conversion, EOF is returned.

Related functions

fscanf, scanf, strtod, strtol, strtoul

Example

♦include <stdio.h>

char data[10];

sscanf ("Today is Thursday", "Today is %s", data)
printf ("%s\n", data);

will print out

Thursday

~y strcat 198

strcat

The strcat function concatenates two null terminated strings.

Definition

♦include <string.h>
char *strcat (char *sl, const char *s2);

LIBRARY

Purpose

This function appends a copy of the null terminated string pointed to by s 2
to the end of the null terminated string pointed to by si, with the first
character of s 2 replacing the terminating null of s 1. The two strings should
not overlap.

Returns

The strcat function returns a pointer to the (modified) string si.

Related functions

strncat, strcpy

Example

♦include <string.h>

char a [20] = "first";

char * b = "second";

strcat (a, b);

printf ("%s\n", a) ;

will produce as output

firstsecond

I
LIBRARY 199 strchr

strchr

The st rchr function searches for a character in a null terminated string.

Definition

I

♦include <string.h>
char *strchr (const char *s, int c);

Purpose

I This function searches for the first occurrence of the character c (converted to
char) in the null terminated string pointed to by s. Note that the terminating
null character is included in the search.

Returns

The strchr function returns a pointer to the first instanceof the character c,
or NULL if no instance is found.

Related functions

memchr, strcspn, strpbrk, strrchr, strspn, strstr

Example

♦include <string.h>

char *ptr = strchr ("abcdefghijklmnop", 'f');

printf ("after f comes %c\n", *(ptr +1));

produces as output

after f comes g

I

I

1

I

I

I

strchr 200 LIBRARY

strcmp

The strcmp function compares two null terminated strings.

Definition

♦include <string.h>
int strcmp (const char *sl, const char *s2);

Purpose

This function compares the null terminated strings pointed to by si and s2.
The characters are always treated as unsigned, regardless of the compilation
options.

I
Returns

The strcmp function returns an integer less than, equal to, or greater than
zero, according to whether the string pointed to by si is less than, equal to, or
greater than that pointed to by s2.

Related functions

stricmp, strncmp, strnicmp, memcmp, memicmp

Example

♦include <string.h>

struct node {char name[20];

struct node *left;

struct node *right; };

struct node *tree_search(struct node *n, char *target)
{ int diff;

if (n == NULL) return NULL;

diff = strcmp (n->name, target);
if (diff == 0) return n;
return tree_search(diff < 0 ? n->left : n->right,

target);

}

I

I

1

I

I

I

I

I

I

I

I

I

LIBRARY 201 Strcoll

strcoll

The strcoll function transforms a string for comparison according to the
current locale.

Definition

♦include <string.h>
size_t strcoll (char *to, size_t maxsize,

const char *s2);

Purpose

This function transforms a string so that if two transformed strings are
compared using memcmp, strcmp or other library compare function, then
the result will be appropriate to the current locale. No change occurs if the
current locale is the standard locale. No more than maxsize characters will

be placed in the transformed string to (including the terminating null
character). However, the length of the resulting string will be at most twice
the length of the original string (plus the terminating null character).

Returns

The strcoll function returns the length of the resulting string (not
including the terminating null character). If the resulting string is larger
than maxsize characters then zero is returned and the contents of to will
be indeterminate.

Related functions

setlocale, stricmp, strncmp, strnicmp, memcmp, memicmp

~y strcoll 202 LIBRARY
Example

♦include <string.h>

char stringl[6], string2[6];

/* setlocale here */

strcpy(stringl, "Hello");
strcoll(string2, 6, "Hello");

if (strcmp(stringl,string2))
puts ("The transformed string is different");

else

puts("The transformed string has not changed");

I

I

I

I

LIBRARY 203 strcpy

strcpy

The strcpy function copies one null-terminated string to another.

Definition

♦include <string.h>
char *strcpy (char *dst, const char * src);

Purpose

This function copies characters from the string pointed to by src to the array
pointed to by dst, up to and including the terminating null character. The
destination object must be large enough to hold this string (i.e. at least
strlen(src) + 1 characters), or unpredictable results will occur. The two
strings should not overlap.

Returns

The strcpy function returns the address of the destination string, dst.

Related functions

strncpy, strdup, memcpy, memmove

Example

The strcat function could have been coded as follows:

♦include <string.h>

I

I

I

I

/* A simple way of defining strcat */
char *strcat (char *dst, const char *src)

{ char *a = dst;

while (*a)

a++;

/* a now points to dst's terminating null */
strcpy (a, src);

return dst;

}

~y strcspn 204 LIBRARY

strcspn

The strcspn function returns the length of the initial segment of a null
terminated string which consists entirely of characters not occurring in
another string.

Definition

♦include <string.h>
size t strcspn (const char *str, const char *template)

Purpose

This function locates the first character in s t r which also occurs in

template, and returns the number of characters which precede it. If
template is empty, or contains no characters which occur in str, the result
will be equal to strlen (str).

Returns

The strcspn function returns the length of the initial segment of str which
contains no characters which also occur in template. This is equivalent to the
index within str of the first character which is also in template (if the null-
terminating character is considered part of template).

Related functions

strspn, strpbrk

Example

♦include <string.h>

char *filename;

if (strcspn (filename, ".") > 8)
error("Filename too long");

I

LIBRARY 205 strdup

strdup

The strdup function duplicates a null terminated string. This function is not
part of the draft ANSI standard.

Definition

♦include <string.h>
char *strdup (const char *src);

1
This function duplicates the string src. A block of memory of size

Istrlen(src) + 1 is allocated (using malloc), and the string pointed to by
src is copied into it, up to and including the terminating null character. The
memory allocated should be released (using free) when no longer required.

Purpose

I Returns

The strdup function returns a pointer to the new copy of the string. If no
memory can be allocated, it returns NULL.

I

I

I

I

I

I

I

Related functions

strcpy

Example

♦include <string.h>

/* Output a string backwards */

void reverse_puts(const char *str)
{ char * localcopy;

localcopy = strdup(str);
if (localcopy)

puts(strrev(localcopy));
free(localcopy);

}

y strerror 206 LIBRARY

strerror

The strerror function returns a string describing a given error number.

Definition

♦include <string.h>
char *strerror (int errnum);

Purpose

This function maps the error number errnum to an error message string.
Typically this will be used for generating error messages when a library
routine fails, and the value of the macro errno will be passed as the parameter
errnum. Note that this function (as defined in the ANSI standard) is not
identical to the strerror function available on some UNIX systems.

Returns

The strerror function returns a pointer to the relevant error message
string. If the value of errnum is not one of the error codes described in the
header file errno. h, this will be an empty string, otherwise it will contain the
same text as the comment in errno . h. The string should not be modified by
the program.

Related functions

perror

Example

♦include <string.h>
♦include <stdio.h>

/* Open a file carefully */
FILE * careful_open(const char *name, const char *mode)
{ FILE * thefile;

errno = 0;

thefile = fopen (name, mode);
if (thefile == NULL)

fprintf(stderr, "Error opening file %s : %s\n",
name, strerror(errno));

return thefile;

I

I

I

I

I

I

I

I

I

I

I

I

I

I

LIBRARY 207 strftime

strftime

The strftime function constructs a string describing a given date and time in
a given format.

Definition

♦include <time.h>

size_t strftime (char * s, size_t maxsize,
const char *format, const struct tm *timeptr)

Purpose

This function places up to maxsize characters in the array pointed to by s,
under the control of the format string pointed to by format. Any character in
the format string not preceded by a % character is copied into the array
unchanged, including the terminating null. Directives in the format string,
which consist of the % character followed by a letter, cause characters to be
placed in the array determined by the directive, the current locale, and the date
and time specified by the structure pointed to by the parameter t imept r :-

Directive Result

%a locale's abbreviated weekday name
%A locale's full weekday name
%b locale's abbreviated month name
%B locale's full month name

%c locale's appropriate date and time representation
%d day of the month (01 -31)
%H hour using 24 hour clock (00 - 23)
%I hour using 12 hour clock (01 - 12)
%j day of the year (001 - 366)
%m month of the year (01 - 12)
%M minute (00 - 59)
%p locale's equivalent of AM or PM
%S second (00 - 59)
%U week number, with Sunday as the first day of the week (00 - 53)
%w weekday as a number, where 0 means Sunday (0 - 6)
%W week number, with Monday as the first day of the week (00 - 53)
%x locale's appropriate date representation
%X locale's appropriate time representation
%y year without century (00 - 99)
%Y year with century
%Z timezone name, or no characters if no timezone exists. This is

determined by the value of the environment variable TZ.
%% a single % character

strftime 208 LIBRARY

Returns

If the time could be represented in the given format in no more than maxs i ze
characters (including the null), the strftime function returns the number of
characters placed in the array s (excluding the terminating null). Otherwise, it
returns zero, and the contents of the array will be indeterminate.

Related functions

setlocale, asctime

Example

♦include <time.h>

main ()

{ char timestring[40];
time t now = time(NULL);

if (strftime (timestring, 40,
"It is now %I:%M %P",

localtime(now))

puts(timestring);

}

y LIBRARY 209 stricmp

I

stricmp

The stricmp function compares two null terminated strings, ignoring case
differences. This function is not part of the draft ANSI standard.

Definition

♦include <string.h>
int stricmp (const char *sl, const char *s2);

Purpose

This function compares the null terminated strings pointed to by si and s2,
treating upper and lower case letters as equivalent. The characters are always
treated as unsigned, regardless of the compilation options.I

I
The stricmp function returns an integer less than, equal to, or greater than

Czero, according to whether the string pointed to by si is less than, equal to, or
greater than that pointed to by s2, with all letters regarded as if they were
uppercase in both strings.

Returns

I

I

I

I

Related functions

setlocale, strcmp, strncmp, strnicmp, memcmp, memicmp

Example

♦include <string.h>

int f_option = 0;

main (int argc, char *argv[])
{ int cnt;

for (cnt = 0; cnt < argc; cnt ++)

Cif (stricmp (argv[cnt], "-f"))
puts ("Unrecognized option")

else

f_option++;

I

~y strlen 210 LIBRARY

strlen

The strlen function computes the length of a null terminated string.

Definition

♦include <string.h>
size t strlen (const char *s)

Purpose

This function computes the length of the null terminated string pointed to by s.
The value does not include the terminating null itself.

Returns

The strlen function returns the number of characters before the null
character which terminates the string s.

Example

♦include <string.h>

char buffer[20];

if (strlen (s) <= 19)
strcpy(buffer, s);

else

{ puts("Name too long");
exit (1);

}

I

LIBRARY 211 Strlwr

strlwr

The strlwr function converts a string to lowercase. This function is not part
of the draft ANSI standard.

Definition

♦include <string.h>
char *strlwr (char *s);

Purpose

This function converts all upper case characters in the string pointed to by s to
r lower case. All other characters, up to and including the terminating null

character, remain unaltered.

1

!

!

I

I

I

I

I

I

Returns

The strlwr function returns the address of the original string, s.

Related functions

strupr, tolower, toupper

Example

♦include <string.h>

char *s = "Hello world!";

puts(strlwr (s)) ;

produces the output

hello world!

^y strncat 212 LIBRARY

strncat |
The strncat function appends characters from one null-terminated string to
another.

Definition

♦include <string.h>
char *strncat (char *dst, const char *src, size t n)

Purpose

This function appends characters from the string pointed to by src to the end
of the string pointed to by dst, until either the terminating null character is
reached or n charactershave been copied. A null character is then appended to
the result. The first character of src overwrites the null at the end of dst.
The destination objectmust be largeenough to hold the resulting string (i.e. it
must have at least strlen (dst) + n + 1 characters), or unpredictable
results will occur. The two strings should not overlap.

Returns

The strncat function returns the address of the destination string, dst.

Related functions

strcat

Example

♦include <string.h>

main ()

{ char salutation[20], *surname;

strcpy(salutation, "Dear Mr ");
strncat (salutation, surname, 20

I

I

I

I

!

~y LIBRARY 213 strncmp

strncmp

The strncmp function compares the initial portions of two null-terminated
strings.

Definition

♦include <string.h>
int strncmp (const char *sl, const char *s2, size_t n);

Purpose

This function compares not more than n characters from the null-terminated
strings pointed to by si and s2. The characters are always treated as unsigned,
regardless of the compilation options.

ReturnsI
The strncmp function returns an integer less than, equal to, or greater than

[zero, according to whether the string pointed to by s 1 is less than, equal to, or
greater than that pointed to by s2, ignoring any characters after the n'th but
before the end of either string, if both strings are longer than n.

I

I
Example

♦include <string.h>

/* Check if sentence starts with a particular word */

I

I

I

I

Related functions

strcmp, stricmp, strnicmp, memcmp, memicmp

char *sentence;

int furthermores = 0;

if (strncmp(sentence, "Furthermore ", 12) == 0)
furthermores++;

~y strncpy 214 LIBRARY

strncpy

The strcpy function copies the initial portion of one null-terminated string to
another.

Definition

♦include <string.h>
char *strncpy (char *dst, const char* src, size_t n) ;

Purpose

This function copies n characters from the string pointed to by src to the
array pointed to by dst. If src contains less than n characters, null
characters will be appended to dst until n characters in all have been written.
If src contains more then n characters, the string pointed to by dst will not
be null terminated. The destination object must be large enough to hold this
string (i.e. at least n characters), or unpredictable results will occur. The two
strings should not overlap.

Returns

The strncpy function returns the address of the destination string.

Related functions

strcpy, strdup, memcpy, memmove

Example

♦include <string.h>

char buffer[10], *str;

/* Copy first 9 chars of a string */
strncpy (buffer, str, 9);

/* Note that this may not be null terminated, so
do so now */

buffer[9] = 0;

I

I

I

LIBRARY 215 strnicmp

strnicmp

The strncmp function compares the initial portions of two null-terminated
strings, ignoring case differences. This function is not part of the draft ANSI
standard.

Definition

♦include <string.h>

int strnicmp(const char *sl, const char *s2, size_t n);

• Purpose

This function compares not more than n characters from the null-terminated
strings pointed to by si and s2, treating upper and lower case letters as
identical. The characters are always treated as unsigned, regardless of the
compilation options.

I

Returns

The strnicmp function returns an integer less than, equal to, or greater than
zero, according to whether the string pointed to by si is less than, equal to, or
greater than that pointed to by s2, ignoring any characters after the n'th but
before the end of either string, if both strings are longer than n. All letters in
either string are treated as if they were upper case.

Related functions

strcmp, stricmp, strncmp, memcmp, memicmp

I

I

I

Example

♦include <string.h>

char *clause;

int howevers = 0;

/* Check if clause starts with a particular word */

if (strnicmp(clause, "however ", 12) == 0)
howevers++;

~y strnset 216 LIBRARY

strnset

The strnset function fills the initial portion of a string with a character. It is
not part of the draft ANSI standard.

Definition

♦include <string.h>
char *strnset (char *s, int c, size t n) ;

Purpose

This function sets the characters in the string s to the value c (converted to an
unsigned char), until n characters have been written or the null-
terminating character is reached.

Returns

The strnset function a pointer to the destination string, s.

Related functions

memset, strset

Example

♦include <string.h>

char s [20] ;

strcpy (s, "Hello there\n");
puts (strnset (s, '*', 5));

prints out the string

***** there

I

~~y LIBRARY 217 strpbrk

strpbrk

The strpbrk function locates the first character from a given set in a string.

Definition

I

I

I
Returns

The strpbrk function returns a pointer to the first such character. If no
characters occur in both strings, NULL is returned.

I

I
Example

♦include <string.h>

I

♦include <string.h>
char *strpbrk (const char *sl, const char *s2);

Purpose

This function locates the first instance in the string pointed to by si of any
character from the string pointed to by s2. The terminating null characters are
not included in the search.

Related functions

strstr, strchr, strspn, strtok

main ()

{ char *s;

puts (strpbrk("What a surprise!\n", "aeiouAEIOU")

}

produces the output

at a surprise!

I

I

~y strrchr 218 LIBRARY

strrchr

The strrchr function searches for a character in a null terminated string.

Definition

♦include <string.h>
char *strrchr (const char *s, int c);

Purpose

This function searches for the last occurrence of the character c (converted to
char) in the null terminated string pointed to by s. Note that the terminating
null is included in the search.

Returns

The strrchr function returns a pointer to the last (rightmost) instance of the
character c, or NULL if no instance is found.

Related functions

memchr, strcspn, strpbrk, strchr, strspn, strstr

Example

♦include <string.h>

char *pathname, *filename;

/* Print out the filename portion of a path name */

if ((filename = strrchr(pathname, '\\')) != NULL)
puts(filename);

else

puts (pathname);

I

I

I

LIBRARY 219 strrev

strrev

The strrev function reverses a null terminated string.

Definition

♦include <string.h>
char *strrev (char *s);

Purpose

This function reverses the order of the characters in the null-terminated string
pointed to by s. Note that as the contents of the array pointed to by s are
modified, a string constant should not be passed.

Returns

The strrev function returns a pointer to the destination string, s.

Related functions

strcpy

Example

♦include <string.h>

char *s;

strcpy (s, "Have a nice day!");
strrev (s);

put s (s) ;

produces the output

!yad ecin a evaH

~y strset 220 LIBRARY

strset

The strset function fills a string with a character. It is not part of the draft
ANSI standard.

Definition

♦include <string.h>
char *strset (char *s, int c) ;

Purpose

This function sets all the characters in the string pointed to by s which precede
the terminating null to the value c (converted to an unsigned char).

Returns

The strset function returns a pointer to the destination string, s.

Related functions

memset, strnset

Example

♦include <string.h>

char s[12];

strcpy (s, "Hello there");
puts (strset (s, '*'));

prints out the string

!

I

I

I

LIBRARY 221 strspn

strspn

The strspn function measures the span of characters from a given set in a
null terminated string.

Definition

♦include <string.h>
size_t strspn (const char *sl, const char *s2);

Purpose

This function computes the number of characters at the start of the string
pointed to by s 1 which are also in the string pointed to by s2. This is also the
index of the first character in s 1 which is not also in s2. The terminating null
characters are not included in the scans.

Returns

The strspn function returns the number of matching characters.

Related functions

strcspn, strpbrk, strchr, strstr

Example

♦include <string.h>

char *name = "Prospero Software";
int len;

/* Calculate length of first name */

len = strspn(name, "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
"abcdefghijklmnopqrstuvwxyz")

/* len will be 8 here */

strstr 222 LIBRARY

strstr

The strstr function locates one null terminated string in another.

Definition

♦include <string.h>
char *strstr (const char *sl, const char *s2);

Purpose

This function locates the first occurrence of the string pointed to by s 2 in
the string pointed to by si. The terminating null character of s 2 is not
included in the search. .

Returns

The strstr function returns a pointer to the start of the first occurrence
found. If no occurrence is located, NULL is returned. If s2 is empty, a
pointer to s 1 is returned. .

Related functions

strchr

Example

♦include <string.h>

char *s = "Happy birthday to you!

puts (strstr (s, "day"));

produces the output

day to you!

I

I'

I

1

I

I

I

I

I

I

I

I

I

I

I

LIBRARY 223 strtod

strtod

The strtod function converts a string to a floating point number.

Definition

♦include <stdlib.h>

double strtod (const char *nptr, char **endptr);

Purpose

This function attempts to convert the string pointed to by nptr into a floating
point number. First, leading white space characters (as defined by isspace)
are skipped. Next, a series of characters are read to form the subject sequence.
This should start with an optional plus or minus sign, followed by a sequence
of one or more digits, optionally including a decimal-point character, followed
by an optional exponent, which consistsot the letter "E" or "e", a plusor minus
sign, and a sequence of one or more digits. As soon as a character is
encountered which does not agree with the above sequence, scanning stops.

If a subject sequence matching the above is read, it is converted to a double
precision value, and a pointer to the first character after the subject sequence is
assigned to the object pointed to by endptr, unless endptr is NULL. If the
subject sequence does not match the above description, the value of nptr is
copied to the object pointed to by endptr.

Returns

The strtod function returns the converted value. If no matching sequence is
found, zero is returned, and *endptr will be equal to nptr (unless endptr
is NULL). If the converted value would overflow, plus or minus HUGE_VAL is
returned, and errno will be set to ERANGE. If the converted value would
underflow, zero is returned, and errno will be set to ERANGE.

Related functions

atof, atoi, scanf, sscanf , strtol, strtoul

~y strtod 224 LIBRARY
Example

♦include <stdlib.h>

char *s;

doub1e d ;

d = strtod("-1.23E20.5", &s);

printfC'd is %g, s is '%s' \n", d, s)

prints out the string

d is -1.23e20, s is '.5'

I

I

!

I

I

I

I

I

I

I

I

LIBRARY 225 strtok

strtok

The strtok function breaks a string into tokens.

Definition

♦include <string.h>
char *strtok (char *sl, const char *s2);

Purpose

This function splits the string pointed to by si into a sequence of tokens,
delimited by characters in the string s2. This is done by making a sequence of
calls to the strtok function as follows.

The first call of a sequence takes a pointer to a subject string to be tokenized in
the parameter si, and a pointer to a string containing delimiter characters in
s2. The function searches through the string pointed to by si until a character
not in s 2 is found - this is the start of the first token. Subsequent calls in the
sequence pass a NULL pointer as s 1, and the value of the start of the next token
stored by the last call in the sequence is used.

The function then searches for the next character in the subject which is also in
the set of delimiters in s 2. If there is none, the current token extends to the end
of the subject string, and subsequent calls in the same sequence will return
NULL. Otherwise, the delimiting character is overwritten with a null character
to terminate the current token, and a pointer to the character following it is
stored for use as the first character of the next token.

The delimiter string pointed to by s2 need not be the same for different calls in
the same sequence.

Note that the subject string will be modified, as delimiter characters are
overwritten by nulls. A string constant should not therefore be used as the first
parameter.

Returns

The strtok function returns a pointer to the start of the token, or NULL if
there are no tokens.

strtok 226 LIBRARY

Related functions

strcspn, strspn

Example

♦include <string.h>

char * token, subject;

strcpy (s, "abc,def.4");

token = strtok(s, ",") ;

token = strtok(NULL, ",#f")
token = strtok(NULL, ".")

token = strtok(NULL, "♦")

/* token is "abc" */

/* token is "de" */

/* token is "4" */

/* token is NULL */

I

I

I

f

I

I

I

I

I

I

I

I

I

1

I

[

LIBRARY 227 strtol

strtol

The strtol function converts a string to an integer.

Definition

♦include <stdlib.h>

long int strtol (const char *nptr, char **endptr,
int base);

Purpose

This function attempts to convert the string pointed to by nptr into an integer
using the radix specified by base. First, leading white space characters (as
defined by isspace) are skipped. Next, a series of characters are read to
form the subject sequence.

The expectedsubject sequencedependsupon the value of base as follows (all
subject sequences can be precededby an optional plus or minus sign). If base
is zero, the subject sequence should be in the same form as an octal, decimal or
hexadecimal C constant (without a suffix), and the base to be used for the
conversion is determined automatically from the form of the constant.
Otherwise, base should be in the range 2 to 36, and the subject sequence
consists of digits and letters representing values less than the given base, where
the letters "A" to "Z" (in either upper or lower case) represent the values 10 to
35. If base is equal to 16, the subject sequence may start with an optional "Ox"
or "OX" sequence.

If a subject sequence matching the above is read, it is converted to a long int
value, and a pointer to the first character after the subject sequence is assigned
to the object pointed to by endptr, unless endptr is NULL. If the subject
sequence does not match the above description, the valueof nptr is copied to
the object pointed to by endptr.

Returns

The strtol function returns the converted value. If no matching sequence is
found, zero is returned, and *endptr will be equal to nptr (unless endptr
is null). If the converted value would overflow, LONG_MAX or LONGjMIN is
returned, depending on the sign of the result, and errno will be set to
ERANGE.

strtol 22!? LIBRARY

Related functions

atof, atoi, scanf, sscanf, strtod, strtoul

Example

♦include <stdlib.h>

char *s;

long int 1;

1 = strtol ("1011 Fred", &s, 2);

printf ("1 is %ld, s is '%s'\n", 1, s);

prints out the string

1 is 11, s is ' Fred'

I

I

I

I

LIBRARY 229 strtoul

strtoul

I The strtoul function converts a string to an unsigned long integer.

Definition

♦include <stdlib.h>

[unsigned long strtol (const char *nptr, char **endptr,
int base);

I

I

I

I

I

I

I

I

I

I

Purpose

This function attempts to convert the string pointed to by nptr into an integer
using the radix specified by base. Apart from the return value, it is equivalent
to strtol, but may be useful for converting values which would overflow the
range of signed long integers. Note that the subject sequence may still be
preceded by a minus sign, which will cause the value to be negated before
being returned.

Returns

The strtoul function returns the converted value. If no matching sequence is
found, zero is returned, and *endptr will be equal to nptr (unless endptr
is null). If the converted value would overflow, ULONG_MAX is returned, and
errno will be set to ERANGE.

Related functions

atof, atoi, scanf, sscanf, strtod, strtol

Example

♦include <stdlib.h>

char * s;

unsigned long int 1;

1 = strtoul("-1 Fred", &s, 10);

printf("l is %lx, s is '%s'\n", 1, s);

prints out the string

1 is Oxffffffff, s is ' Fred'

strtoul 230 LIBRARY

strupr

The st rupr function converts a string to upper case. This function is not part
of the draft ANSI standard.

Definition

♦include <string.h>
char *strupr (char *s);

Purpose

This function converts all lower case characters in the string pointed to by s to
upper case. All other characters, up to and including the terminating null
character, remain unaltered.

Note that the string pointed to by s is modified, and therefore a string literal
should not be passed.

Returns

The strupr function returns a pointer to the original string, s.

Related functions

strlwr, tolower, toupper

Example

♦include <string.h>

main ()

{ char s[13] ;

strcpy(s, "Hello world!");

puts (strupr (s));

}

produces the output

HELLO WORLD!

I

I
LIBRARY 231 swab

swab

The swab function swaps bytes pairwise, copying them to a new destination. It
is not part of the draft ANSI standard.

Definition

♦include <stdlib.h>

void swab (void *source, void *dest, size_t nmemb);

Purpose

This function copies nmemb bytes from source to dest. Each pair of bytes
read is swapped before being written to the destination. It is useful for
converting data betweentwo processors: one that stores data low byte first, and
the other storing data high byte first. Note that nmembmust be even.

I

I

I

I

I

I

I

I

I

Returns

The swab function returns no value.

Related functions

memcpy, memmove

Example

♦include <stdlib.h>

int data[100], data2[100];

FILE *stream = fopen ("data", "wb+");

/* convert the file data to store bytes in opposite
order */

fread (data, sizeof (int), 100, stream);

swab (data, data2, 100 * sizeof (int));
rewind (stream);

fwrite (data, sizeof (int), 100, stream);

fclose (stream);

y system 232

system

The system function calls a command processor.

Definition

♦include <stdlib.h>

int system (const char *string);

LIBRARY

Purpose

This function calls a command processor. This is not implemented in Prospero
C; the function is included here to provide compatibility with other systems.
Passing a NULL pointer to the function can be used to determine if a command
processor is available.

Returns

The system function always returns zero to indicate no command processor
is available.

Related functions

bios, gemdos, xbios

Example

♦include <stdlib.h>

if (system (NULL) != 0)
{ /* Use command processor */

}

else

puts ("No command processor is available'

I

I

I

I

LIBRARY 233 tan

tan

The t an function computes the tangent of a value.

Definition

♦include <math.h>

double tan (double x);

I
Purpose

This function calculates the tangent of the argument x, specified in radians.

Returns

The tan function returns the tangent of x (in radians). If the value of x is very
C large, the result may lose some or all significance - in the latter case, zero will

be returned, but no error will be recorded in errno.

I

I

I

!

I

I

Note that it is impossible to cause overflow as the compiler cannot represent
nil etc. closely enough for this to occur.

Related functions

atan, atan2, cos, sin, tanh

Example

♦include <math.h>

♦define pi 3.1415926535

int i;

double x;

for (i = 0; i < 10; i++)

{ x = i * pi / 10;
printf ("tan(%f) is %f\n", x, tan(x));

}

I

tanh 234 LIBRARY

tanh

The tanh function computes the hyperbolic tangent of a value.

Definition

♦include <math.h>

double tanh (double x);

Purpose

This function calculates the hyperbolic tangent of the argument x.

Returns

The tanh function returns the hyperbolic tangent of x. There is no error
return.

Related functions

sinh, cosh, exp

Example

♦include <math.h>

double x;

for (x = 0.0; x < 1.0; x += 0.1)
printf ("tanh(%f) is %f\n", x, tanh(x));

!

LIBRARY 235 tell

tell

The tell function returns the file position associated with an unbuffered file.
It is not part of the draft ANSI standard.

Definition

♦include <io.h>

long int tell (int handle);

Purpose

This function returns the position of the file pointer (the location within the
Cfile at which the next input or output is performed) for the file associated with

handle. This value may then be used in a subsequent call of lseek to restore
the file to that position.

I Returns

The tell function returns the file position relative to the start of the file. If an
error occurs, it returns -1L, and errno will be set to indicate the error.

I

!

!

i

i

Related functions

fgetpos, fsetpos, fseek, ftell, lseek

Example

♦include <io.h>

/* function to determine how far we are from the end

of the file */

long int from_end (int handle)

{ return (long) filelength (handle) - tell (handle);

}

time 236 LIBRARY

time

♦include <math.h>

time t time (time t *timer);

Purpose

This function reads the current system time. If timer is not NULL, then the
time is also assigned to the object pointed to by t imer.

Returns

The t ime function returns the date and time, according to the system clock.
These are returned in a type of time_t. The functions localtime and
gmt ime can convert the time in this format to a broken down format, which
contains the time components in separate fields, or ctime can be used to
convert the time to a string.

Related functions

asctime, clock, gmtime, localtime, mktime

Example

♦include <time.h>

time_t timer = time (NULL);

char *time_buf = ctime (Stimer);

printf ("The time is %s\n", time_buf);

i

I

The t ime function reads the current system time.

Definition

I

I

I

I

y LIBRARY 237 tmpfile

tmpfile
I The tmpfile function creates a temporary binary file.

I

Definition

♦include <stdio.h>

FILE *tmpfile (void);

Purpose

This function creates a temporary binary file which will be automatically
deleted when it is closed (either explicitly or on normal program termination).
The file is opened in the same mode as by using fopen with parameter "wb+",
and with a filename which does not correspond to any existing file.

Returns

The tmpfile function returns a pointer to the newly created stream
information. If unsuccessful, NULL is returned.

Related functions

fopen, tmpnam

Example

♦include <stdio.h>

I

I

I

I

I

main ()

{ FILE *stream = tmpfile ();

/* Use stream as a temporary file */
}

/* the temporary file is now closed and removed */

~y tmpnam 238 LIBRARY

tmpnam

The tmpnam function creates a unique file name.

Definition

♦include <stdio.h>

char *tmpnam (char *s) ;

Purpose

This function creates a valid file name which is not the same as any existing
file. A different filename will be returned each time it is called. The file names
generated are of the form "CTEM$nnn.$$$", where nnn represents a
number in the range 000 to 99 9.

Returns

If the argument s is not null, it should point to an array of at least Ltmpnam
characters, into which the file name is written. If s is NULL, the filename is
written into static store, which may be overwritten by subsequent calls of the
tmpnam function. The function returns either s or a pointer to the static store,
or null if no unique filename could be generated.

Related functions

tmpfile

Example

♦include <stdio.h>

/* Open 5 temporary text files */
FILE *stream[5];

char filename[5,L_tmpnam];
int i;

for(i=0; i<5; i++)
stream[i] = fopen (tmpnam (filename[i]), "w+");

/* use the files */

fcloseall(); /* close and remove */
for(i=0; i<5; i++)

remove (filename[i]);

I

LIBRARY 239 toascii

toascii

The toascii function converts a character to the ascii range. It is not part of
the draft ANSI standard.

Definition

♦include <ctype.h>
int toascii (int c);

Purpose

This function is used to force a character value to the range 0 to 127 where the
ascii standard character values apply. It defined as a macro in ctype. h, but if
ctype. h is not ♦included, or if toascii is ♦undef'd, a library function
will be called.

Returns

The toascii function returns the value of c, logically ANDed with 0x7F to
force it to the required range.

Related functions

toupper, tolower

Example

♦include <ctype.h>

putc (toascii (193)) ;

will produce an A.

!

tolower 240 LIBRARY I

tolower

The tolower function converts a character to lower case.

Definition

I

I
♦include <ctype.h>
int tolower (int c);

Purpose

If the character c (converted to an unsigned char) is an upper case letter, it
is converted to the corresponding lower case letter. Characters other than
upper case letters are not converted.

Returns

The tolower function returns the value of c, converted to lower case if
appropriate.

Related functions

toupper, strlwr, strupr

Example

♦include <ctype.h>

putc (tolower ('A'));

will produce an a.

The toupper function converts a character to upper case.

Definition

♦include <ctype.h>
int toupper (int c);

I
Purpose

If the character c (converted to an unsigned char) is a lower case letter, it
is converted to the corresponding upper case letter. Characters other than
lower case letters are not converted.

I

LIBRARY 241 tolower

toupper

Returns

The toupper function returns the value of c, converted to upper case if
appropriate.

Related functions

tolower, strlwr, strupr

Example

♦include <ctype.h>
♦include <conio.h>

puts ("Continue (y/n) ?");

if (toupper (getche ()) == 'Y')
/* continue */

else

/* finish */

tzset 242 LIBRARY

tzset

The tzset function sets the time zone from the environment. It is not part of
the draft ANSI standard.

Definition

♦include <time.h>

void tzset (void);

Purpose

This function scans the environment for the environment variable TZ. This
consists of three letters indicating timezone name and a decimal number
indicating how many hours the timezone is earlier than GMT (e.g., ABCl);
this mayoptionally be followed by three letters indicating the daylight saving
time name and that it is in effect (e.g., ABC-1BST). If the environment
variable TZ is not found, then the timezone will be unknown, and gmtime will
not be able to find Greenwich Mean Time.

Returns

No value is returned.

Related functions

gmtime, strftime

Example

♦include <time.h>

char buffer [81];

time_t now;

tzset ();

now = time(NULL);
strftime (buffer, 80, "The time is now %H:%M:%S %Z\n",

localtime(Snow));

will print (assuming TZ=GMT-1BST)

The time now is 14:26:52 BST

I

I

I

I

LIBRARY 243 ultoa

ultoa

The ultoa functionconverts an unsigned long integer into an ASCII string. It
is not part of the draft ANSI standard.

Definition

♦include <stdlib.h>

char *ultoa (unsigned long value, char *string,
int radix);

Purpose

This function converts the unsigned long integer value into ASCII characters
in string, representing the value of the integer in the base radix (in the
range 2 to 36). A terminating null character is always appended to theresulting
string. The maximum number of characters which canbe placed into thearray
pointedto by string is 33 (when radix is 2).

Returns

The ultoa function returns the value of string.

Related functions

itoa, ltoa, sprintf, atoi, atoi, strtol, strtoul

I
Example

| ♦include <stdlib.h>

char digits [33];
unsigned long int big = 123456789;

I

I

I

ultoa (big, digits, 2);

printf ("%ld in binary is %s\n", big, digits)

" ungetc 244 LIBRARY

ungetc

The ungetc function pushes a character back onto an inputstream.

Definition

♦include <stdio.h>

int ungetc (int c, FILE *stream);

Purpose

This function pushes the character c (converted to an unsigned char)
back onto the input stream specified by stream, so that the next input
operation on that stream will read that character as the first character. The
character is not actually written to the file, and will be discarded if a file
positioning function is calledbefore thecharacter is readback. A pushedback
character must be re-read (or discarded) before another character can be
pushed back.

Returns

The ungetc function returns the character c if successful. If it is called when
a characterhas already beenpushed backand not yet read, or if the valueof the
argument c is EOF, ungetc returns EOF.

Related functions

getc, getchar, ungetch

Example

♦include <stdio.h>

/* function to move file pointer onto next non-space
char */

void next_char (FILE * stream)

{ int ch;

while (!feof (stream)
&& isspace (ch = getc (stream)));

if (!feof (stream))
ungetc (ch, stream); /* put the char back */

}

I

I

I

I

I

I

I

1

I

I

I

I

I

LIBRARY 245 ungetch

ungetch

The ungetch function pushes back a character to the console. It is not part of
the draft ANSI standard.

Definition

♦include <conio.h>

int ungetch (int c)

Purpose

This function causes the character c (converted to an unsigned char) to be
stored, so that the next console input operation using getch or getche will
read back that character. The character is not actually written to the screen.
Once a character has been pushed back, it must be re-read before another
character is pushed back.

Returns

The ungetch function returns the character c if successful. If it is called
when a character has already been pushed back and not yet read, or if the value
of the argument c is -1, ungetch returns -1.

Related functions

getch, getche, ungetc

Example

♦include <conio.h>

/* function returns the next character from the

keyboard as long as it is a letter, else returns
and leaves the character unread */

int get_alpha(void)

{ int ch;

if (isalpha (ch = getche ()))
return ch;

ungetch (ch);

return -1;

va_arg, va_end, va_start 246 LIBRARY

va_arg, va_end, va_start
These macros are used to obtain the arguments from a variable argument list.

Definition

♦include <stdarg.h>
type va_arg (va_list ap, type);
void va_end (va_list ap);
void va_start (va_list ap, parm);

Purpose

These macros are used to obtain arguments from a variable argument list in a
portable manner. To access the parameters of a function accepting a variable
number or type of parameters, a pointer of type va_list (declared in
stdarg. h) is initialized to point to the first variable argument by calling the
macro va_start. The first parameter of this macro is the pointer to be
initialized, while the second is the name of the right-most non-variable
parameter of the function (the one immediately preceding the elipsis).

Once the pointer is initialized, va_arg is used to obtain the parameters. The
first call of va_arg will yield the first argument, while subsequent calls will
give the second, third and so on. The type of the argument to be fetched is
given as the second parameter to the macro - this controls the type of the
expression to which the macro expands. After the argument is fetched, the
pointer ap is incremented by the size of type to point to the next argument in
the list. If the types of the arguments fetched do not match the values passed
when the function was called, the results will be undefined.

Finally, any function which calls va_start should also call va end with the
same first parameter before returning. Under Prospero C, this has no effect,
but should be included for portability to other systems. The pointer ap should
not be used after the call to va_end.

There are no library functions corresponding to these macros, and the file
stdarg. h must be included if they are to be used.

I

I

LIBRARY 247 va_arg, va_end, va_start

Returns

The va_start and va_end macros return no values, but may modify the
pointer ap. The va_arg macro expands to an expression of type type,
which evaluates to the value of the next parameter in the variable argument
list. If the typs of this parameter was not type, the value returned by this
and subsequent calls of va_arg will be undefined.

Example

♦include <stdarg.h>

int max(int n, ...)

{ va_list args;
int biggest = INT_MIN;

va_start (args, n);
while (n—)
{ int next = va_arg(args, int);

if (next > biggest)
biggest = next;

}

va_end(args);
return biggest;

vfprintf 248 LIBRARY

vfprintf
The vfprintf function writes formatted output to a stream.

Definition

♦include <stdio.h>

int vfprintf(FILE *stream, const char *format,
va_list arg);

Purpose

This function writes a string of characters controlled by the string pointed to
by format to the file pointed to by stream. See the description of the
function printf for details on the format string. The function is equivalent
to fprintf, except that a pointer to a variable argument list is passed in place
of the variable arguments. This pointer should have been initialized using
va_start (and possibly va_arg). A function should not use the variable
argument pointer arg after calling vfprintf, and should call va_end
before returning.

Returns

The vfprintf function returns the number of characters written to the
stream. If a write error occurs, a negative value is returned, and errno will
be set.

Related functions

fprintf, printf, sprintf, vprintf, vsprintf

I

I

I

I

y LIBRARY 249 vfprintf

Example

I ♦include <stdio.h>

/* This prints a list of numbers to the stream. If more
than 5 are to be printed, the first 5 are printed
followed by etc. */

void ftrunc_seq (FILE * stream, int n, ...)

{ char format[21];

va_list arg_ptr;

I strcpy (format, "%d,%d,%d,%d,%d etc.");
if (n < 5) format! n * 3] = '\0';
va_start (arg_ptr, n) ;
vfprintf (stream, format, arg_ptr);
va_end (arg_ptr);

I

I

I

I

I

I

I

I

~y vfprintf 250

vprintf
The vprintf function writes formatted output to standard output.

Definition

♦include <stdio.h>

int vprintf(const char *format, va list arg);

LIBRARY

Purpose

This function writes a string of characters controlled by the string pointed to
by format to standard output. See the description of the function printf for
details on the format string. The function is equivalent to printf, except
that a pointer to a variable argument list is passed in place of the variable
arguments. This pointer should have been initialized using vastart (and
possibly va_arg). A function should not use the variable argument pointer
arg after calling vfprintf, and should call va_end before returning.

Returns

The vfprintf function returns the number of characters written to the
stream. If a write error occurs, a negative value is returned, and errno will
be set.

Related functions

fprintf, printf, sprintf, vprintf, vsprintf, cprintf

i

i

I

r

i

i

i

i

i

i

i

i

LIBRARY 251 vfprintf

Example

♦include <stdio.h>

/* This prints a list of numbers to the screen. If more
than 5 are to be printed, the first 5 are printed
followed by etc. */

void ftrunc_seq (int n, ...)

{ char format[21];
va_list arg_ptr;

strcpy (format, "%d,%d,%d,%d,%d etc.");
strcat (format,"\n");
if (n < 5) format[n * 3 - 1] = '\0';
va_start (arg__ptr, n) ;
vprintf (format, arg_ptr);
va_end (arg_ptr);

}

~y vsprintf 252 LIBRARY

vsprintf

The vspr int f function writes formatted output to a string.

Definition

♦include <stdio.h>

int vsprintf(char *s, const char *format, va_list arg);

Purpose

This function writes a string of characters controlled by the string pointed to
by format to the string pointed to by s. See the description of the function
printf for details on the format string. The function is equivalent to
sprintf, except that a pointer to a variable argument list is passed in place of
the variable arguments. This pointer should have been initialized using
va_start (and possibly va_arg). A function should not use the variable
argument pointer arg after calling vsfprintf, and should call va end
before returning.

Returns

The vsfprintf function returns the number of characters written to the
string not including the terminating null character.

Related functions

fprintf, printf, sprintf, vprintf, vfprintf

I

I

I

I

I

I

I

LIBRARY 253 vsprintf

Example

♦include <stdio.h>

/* This prints a list of numbers to a string If more
than 5 are to be printed, the first 5 are printed
followed by etc. */

void strunc_seq (char *string, int n, ...)

{ char format[21];
va_list arg_ptr;

strcpy (format, "%d,%d,%d,%d,%d etc.");

if (n < 5) format [n * 3 - 1] = '\0';

va_start (arg_ptr, n);
vsprintf (format, arg_ptr);
va_end (arg ptr);

vsprintf 254 LIBRARY

write
The write function writes data to an unbuffered file. It is not part of the
draft ANSI standard.

Definition

♦include <io.h>

long int write (int handle, void *buffer,
long int length);

Purpose

This function attempts to write length bytes to the file whose handle is
given by handle from the object pointed to by buffer. If the file was
opened in text mode, carriage returns will be inserted before each new-line
character written - these will not be counted towards the number of bytes
written.

Returns

The write function returns the number of bytes written from buffer -
this may be less than length if the disk had insufficient room. If an error
occurred, it returns -1L, and errno will be set to indicate the error.

Related functions

open, fread, fwrite, read, _write

Example

♦include <io.h>

char screencopy[32768];
int handle;

unsigned int written;

handle = open ("data", 0_WRONLY | 0_CREAT, 0);
written = write (handle, screencopy, 32768);

if (written != 32768)

perror ("Error in saving screencopy");

I

I

I

I

I

I

I

LIBRARY 255 _write

_write

The _write function writes data to an unbuffered file. It is not part of the
draft ANSI standard.

Definition

♦include <io.h>

long int _write (int handle, void *buffer,
long int length);

Purpose

This function attempts to write up to length bytes to the file whose handle
is given by handle from the object pointed to by buffer. A direct call is
made to GEMDOS, without any translation of carriage returns for text files,
and without setting errno if errors are detected.

This function is defined as a macro in io.h, but if i o . h is not
♦ included, or if _write is ♦undef'd, a library function will be called.

Returns

The _write function returns the number of bytes read from buffer - this
may be less than length if the disk had insufficient room. If an error
occurs, it returns a negative GEMDOS error code, equal in magnitude to
one of the positive error codes defined in errno . h.

I

I

I

I

I

1

Related functions

open, fread, fwrite, read, read, write

.write 256

Example

♦include <io.h>

int handlel, handle2;

char *fileimage;
long bytes;

/* Duplicate a file */
handlel = open ("filel", 0_RDONLY, 0);
handle2 = open("file2", 0_WRONLY | 0_CREAT

S_IREAD | S_IWRITE);

bytes = filelength(handlel);
fileimage = malloc (bytes);
if (fileimage != NULL)
{ _read(handlel, fileimage, bytes);
_write(handle2, fileimage, bytes);

}
else puts ("Insufficient memory");

free(fileimage);

LIBRARY

!

O TRUNC,

LIBRARY 257 xbios

xbios

I The xbios function calls an Atari XBIOS function.

Definition

♦include <dos.h>

long int xbios (int funcno, ...);

Purpose

This function is used to make a call to one of the Atari's XBIOS (Extended
BIOS) functions. The funcno parameter specifies which XBIOS function is
required. Other parameters are passed where appropriate - their number,
type and purpose depend on the XBIOS function requested. See Atari
technical information for further details.

Returns

The xbios function returns the value returned in dO by the corresponding
XBIOS function.

Related functions

bios, gemdos

I
Example

This (unhelpful!) example sets the keyboard delay and repeat rates to an
' impossible speed.

I
♦include <dos.h>

xbios (35, 1, 1) ;

>rr.
<C

E
C

D

™
*

0
0

0
0

\
0

'-
N

m
T

t
i
n

>
O

M
>

0
-
H

N
(
»

i
i
r
)
V

O
I
^

O
O

O
\
0

-
M

<
»

l
T

f
O

M
1

0
0

0
r
H

(
S

T
t
l
r
1

v
O

^
O

O
O

\
0

-
f
n

'*
O

n
N

N
N

M
n

r
n

m
r
r
i
r
n

(
^

m
c
<

i
T

f
T

r
^

T
t
T

f
T

t
T

t
T

t
'!

r
i
r
i
i
^

i
^

i
f
i
i
^

i
r
i
i
r
i
i
o

v
i
i
o

v
0

\
0

»
O

«
>

O
*

O
*

v
O

t
^

^
(
^

t
-
-

A
A

X
i

.C
A

A

A
•

•
&

a
<

d
•

4->
E

o
m

-
h*-i

A
A

A
A

A

s
z

xz
x

z
xz

fZ
•

A
•

•
A

•
•

a;
.c

^
.a

x
z

a)
a)

E
•

-P
+

j
•

E
E

-H
O

C
O

C
O

O
-H

-H
+

J
-rH

E
E

-H
4-1

4-1

A
A

4
3

x
z

a
-p

-rH
O

A
.-H

C
D

.G
•a

m
•

4-1
-H

O
in

7
3

AfZ
A

A

jQ
•

•
-rH

O
O

o
o

m

ZoH
H

HUO

•aC
U

£1
rQ

•
H

-H
m0)c

73
7

3
H

4-1
4-1

h
c
o

c
o

V
V

v

A
A

A
A

A
A

A
A

,fi
,C

.C
.fi

,C
,£

,£
A

A
A

•
A

A
•

•
•

•
•

•
A

•
X

Z
x

;
+

j
£

£
£

i
f
i
£

i
x

i
A

x
i
x

)
x

:
+

j
.

1_|
.

.
-H

-H
"H

-rH
,C

"H
"H

•
O

A
O

^
(
U

^
^

M
r
H

M
M

'
H

H
^

J
£

-H
i
l
«

1
4

J
4

J
T

)
,
d

'O
T

l
r
a
'O

T
)
+

J
H

•
T

)
r
d

C
0

r
0

r
0

4
-
>

4
-
l
4

-
1

4
-
l
O

4
-
l
4

-
>

<
0

-
H

O
4

-
l

£
r
r
J
E

£
c
o

c
o

c
o

c
o

7
3

c
n

c
o

E
7

3
-
H

c
o

A-H•d4->
co

A
A

x
z

x
z

•
•

A
A

£
i

a
x

z
xz

-rH
-H

•
•

rH
rH

^
£

73
73

-P
4->

4->
4-1

<
0

(0
co

to
E

E

o
o

7
3

7
3

7
3

7
3

t3
4-1

4-1
4->

4->
4-1

C
O

C
O

v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v
v

C
O

cooc
:

L
L03

7
3c

r

XwQ
0)

z
.

o
H

>
•*

c
o

M
C

D
ft

rH

co
01

X
Z

M
E

CO
c0

o
to

e
4-1

4->
U

O
C

D
•H

e
C

D
C

D
rH

-
«

-
t

4-1
co

-rH
u

C
N

•H
U

o
M

73
rH

,*
C

D
4-1

<
D

4-1
C

D
4->

C
O

to
o

C
J

O
u

C
D

(0
4-1

C
C

D
C

c
X

M
-l

•
H

H
C

O
cO

rH
t-\

-
H

o
C

O
O

C
O

rC
cO

e
M

H
>

C
N

4-1
4-1

-H
O

T
0

O
4->

t*—
i

u
c

o
0

C
O

O
o

O
-
H

C
O

rtf
c«

C
D

o
o

O
O

a)
rH

•
H

X
)

E
d)

O
O

C
O

co
C

D
-H

*H
>

•h
a

a
.

>
M

H
-
H

X
f
t

rQ
r
H

rH
>

0
U

3
o

X
!

£
O

o
co

(0
C

O
•P

4->
4-1

+
J

4-1
4->

•rH
co

<
a

C
D

rC
rG

rH
rH

t-i
O

O
U

4-1
-H

-H
M

3
9

o
O

X
ai

x
co

o
o

0
C

D
C

D
T

i-
fa,

co
cfl

cO
cO

10
rd

co
rd

m
C

O
C

O
10

C
O

(0
rQ

-Q
u

o
O

o
o

o
O

o
O

u
O

7
3

73
7

3
7

3
73

C
D

C
D

C
D

1
cd

m
1

H
tH

IH
C

H
*

4

C
O

c
:

oocXC
D

"
O

e
n

«0
-

O
-
N

m
^

c
n

^
o

o
o

v
O

-
c
N

c
o

^
c
n

^
c
^

o
o

o
o

^
N

c
n

i
o

v
o

i
^

c
»

c
^

©
r
-
r
O

T
r
>

n
\
o

c
»

c
^

O
r
-
.
c
^

c
n

T
f
i
n

\
o

c
»

e
^

o
o

o
o

o
o

o
o

o
r^

l^
l^

^
t^

C
X

3
C

X
3

C
»

C
X

:C
J
0

C
3

0
0

O
0

0
C

^
O

\C
T

\<
^

C
3

\O
N

C
3

\O
S

C
3

>
r^

r—
^

-T
—

»-1
r—

T
-4

r-lr—
«

r
^

«
,—

.»
-
h

.—
r
^

~
-

—
^

.r
^

—
,—

it—

O
N

mC
N><c
r
m

0
1

A
A

A
A

A
A

&
x

z
X

Z
X

Z
x

z
X

Z
Ax
z

X
Z

AX
Z

la
0

o
o

o
A

o
A

o
C

U
-H

-
H

•
H

-A
X

Z
-
H

a
x

z
•rH

X
Z

•a
73

7
3

7
3

7
3

7
3

-P
7

3
4-1

en
4->

4-1
4-1

4-1
o

4->
0

C
O

4
J

C
O

X
C

O
C

O
O

T
C

O
-
H

C
O

-
H

h
C

O
E

V
V

V
V

V
V

V
V

V
V

A
A

A
A

A
A

.
C

A
A

A
A

A
X

Z
X

Z
X

Z
X

Z
X

Z
•

X
Z

A
X

Z
X

Z
X

Z
X

Z
rQ

•
X

Z
O

O
O

O
O

-H
-H

-H
-H

-H
rH

-H
X

Z
7

3
7

3
7

3
7

3
7

3
7

3
7

3
4

-
1

4
->

4
J
4

-1
4

->
4

-1
4

-1
4

->
<

0
C

O
O

T
C

O
C

O
C

O
C

O
C

O
E

v
v

v
v

v
v

v
v

A
A

A
A

A
X

Z
X

Z
X

Z
X

Z
X

Z
A

O
O

O
O

O
X

Z
-rH

-H
-H

-H
-H

•
-H

-H

7
3

7
3

7
3

7
3

7
3

C
0

7
3

C
4

-
1

4
-
>

4
-
>

4
-
)
4

-
1

0
4

-
>

0
C

O
C

O
C

O
C

O
C

0
7

3
O

T
O

v
v
v
v
v
v
v
v
v
v
v
v
v

o
o

o
o

A
A

A
X

Z
X

Z
X

Z

4-1
4-1

O
O

C
D

C
D

u
u-
H

rQ

7
34-1

C
O

O
7

3
7

3
7

3

73
73

E
4->

4->
-H

C
O

C
O

4-1
V

V
V

A
A

X
Z

X
Z

A
A

A
A

A
A

A
A

A
X

Z
X

Z
X

Z
X

Z
X

Z
X

Z
X

Z
X

Z
X

Z

C
D

C
D

C
D

C
D

C
D

C
D

C
D

C
D

C
D

C
D

C
D

>
i
>

i
>

i
>

i
>

i
>

i
:
>

i
>

t
>

i
>

i
>

i
4
-
>
4
-
>
4
-
>
4
-
>
4
-
>
4
J
4
-
1
4
-
J
4
-
>
4
-
1
4
-
l

O
O
O
O
O
O
O
O
O
O
O

v
v
v
v
v
v
v
v
v
v
v

ja

4-1XC
D

C7
3C•
HiH

4->
4-1

c
C

O

C
T

i

CCD

C
O

H
rH

C
H

c
co

H
M

£
C

O
•rH

rH
4-1

4
=

U
4-1

4-1
C

D
H

o
X

Zto
04_)

o
-H

cO
4_)

cD
IH

0
C

D
C

O
co

C
D

7
3

co
co

>
C

D
P

X
Z

•
H

U
-
H

f
t

C
D

c
o

O
C

D

™
Q

co
rH

q
U

-l
H

x
z

C
C

o
C

O
73

ft
ft

c
.y

a
m

4
J

o
rG

x
:

rC
s

C
H

-
H

a
£

c
f
t

0
4-1

tn
rd

3
-
H

C
rO

ft

o
p

4
J

4_)
C

D
C

D
'0

o
C

O
7

3
C

D
-
H

4-1
4-1

cO
C

D
O

X
C

O
C

D
4->

rH
•
H

73
o

o
o

O
O

7
3

7
3

C
D

C
O

-
H

rH
r
H

C
O

C
•H

H
O

H
P

f
t

(X
,

B
r
H

C
D

C
D

C
D

rH
r
H

c
0

p
0

a
,

H
P

P
C

D
cD

C
D

C
D

O
C

D
C

D
C

D
H

£
-P

4-1
4-1

4-1
4-1

4-1
4-1

4-1
4-1

4-1
C

O
C

O
rd

O
7

3
tn

rH
ft

ft
C

O
P

3
C

H
tji

tn
&

-
H

-H
•
H

rH
r
H

£
o

a
P-4

ft
H

H
u

H
C

O
co

C
O

4->
s

C
D

C
D

C
D

C
D

C
D

C
D

C
D

C
D

C
D

C
D

E
co

C
O

C
O

C
O

C
O

C
O

C
O

C
O

C
O

O
T

C
O

fa,
M—1

4H
C

H
c
h

M
H

m
C

H
C

H
C

H
C

H
C

H
C

H
IH

C
H

c
h

C
H

C
H

C
H

C
M

C
H

C
H

C
H

c
h

tn
tn

C
n

tn
tn

tn
tn

tn
tn

tn
tn

-rH
•H

-H
-
H

-
H

•H
-H

•H
•H

-
H

•H

rU
U

U
U

U
U

U
L

-
U

U
U

U
U

U
U

y Index of Functions

Function

isxdigit
itoa

kbhit

labs

Idexp

Idiv

localtime

log

loglO

longjmp

lseek

ltoa

malloc

memccpy

memchr

memcmp

memcpy

memicmp

memmove

memset

mkdir

mktime

modf

open

perror

pow

printf
putc

putch

putchar

puts

qsort

raise

rand

read

_read
realloc

remove

rename

rewind

rmdir

scanf

setbuf

setdisk

set jmp

.60 LIBRARY

Header file Page

<ctype.h> 124

<stdlib.h> 125

<conio.h> 126

<stdlib.h> 127

<math.h> 128

<stdlib.h> 129

<time.h> 130

<math.h> 131

<math.h> 132

<setjmp.h> 133

<io.h> 135

<stdlib.h> 137

<stdlib.h> 138

<string.h> 139

<string.h> 140

<string.h> 141

<string.h> 142

<string.h> 143

<string.h> 144

<string.h> 145

<direct.h> 146

<time.h> 147

<math.h> 148

<io.h> 149

<stdio.h> 151

<math.h> 152

<stdio.h> 153

<stdio.h> 157

<conio.h> 158

<stdio.h> 159

<stdio.h> 160

<stdlib.h> 161

<signal.h> 163

<stdlib.h> 164

<io.h> 165

<io.h> 167

<stdlib.h> 169

<stdio.h> 170

<stdio.h> 171

<stdio.h> 172

<direct.h> 173

<stdio.h> 174

<stdio.h> 178

<direct.h> 179

<setjmp.h> 180

I

I

M03

•os]

a

H
S

S
S

2
2

S
S

^
5

t
¥

*
O

r
t
c
o

T
t
l
n

c
o

^
c
^
o

^
^
t
N

n
^
c
o

^
o

^
c
»

(
^
O

r
-
(
N

c
o

c
n

^
c
^
O

r
.
N

(
n

^
l
^
|
^
o

M
O

O
c
»

c
X

)
I
X

!
»

»
»

a
»

a
f
t
c
J
>

O
O

O
O

O
O

O
O

r
H

«
r
-
r
t
«

r
t
r
H

r
t
«

«
(
S

N
N

N
c
N

c
N

c
N

c
O

C
O

c
O

c
n

M
c
O

C
O

r
H

™
r
H

r
H

r
H

«
r
H

r
-
«

r
t
r
t
r
H

«
N

(
S

N
C

N
c
N

N
c
N

N
N

t
N

(
N

C
N

c
N

N
r
l
c
N

c
N

c
N

c
N

c
N

t
N

c
N

(
S

c
N

c
N

t
N

C
N

(
N

c
N

N

A
A

A4
5

A4
3

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

4
5

AX
Z

4
3

A
A

co
C

O

Ax
z

A
x

z
A4
3

4
3

4
3

X
Z

4
3

4
3

X
Z

4
3

4
3

rC
4

3
4

3
4

3
X

Z
4

3
4

3
4

3
4

3
4

3
4

3
4

3
4

3
4

3
4

3
X

Z
X

Z
X

Z
X

Z
X

Z
rC

A
A

A
C

D
i-H

4
3

X
Z

co
C

O
4

3
S

i
tn

tn
tn

tn
tn

b
i

tn
tn

4
3

tn
tn

tn
&

i
tn

tn
tn

tn
tn

tn
t
n

t
n

tn
tn

4
3

tn
4

3
4

3
tn

43
4

3
4

3
4

3
4

3
rH

o
co

C
D

C
D

o
•
H

O
c

C
G

c
c

c
C

C
3

•
c

C
3

£3
C

G
C

C
3

c
G

C
G

C
c

C
-H

G
-H

•
H

C
-H

-rH
A

cO
-
H

c
4

3
4

3
O

o
-
H

x
z

rH
•H

•rH
-
H

•H
-
H

-
H

-H
-
H

-H
C

D
-
H

•H
-rH

-H
-H

-
H

-
H

-
H

-
H

-H
-rH

-H
-
H

-
H

rH
-
H

rH
r
H

-rH
rH

rH
4

3
4

3
x

z
C

D
o

7
3

tn
4-1

4-1
O

O
7

3
4->

7
3

7
3

U
U

u
H

u
H

U
H

E
H

H
U

M
U

(-1
M

H
M

U
H

U
U

M
7

3
H

7
3

7
3

U
7

3
73

4-1
4-1

E
0

-H
•H

C
O

C
O

u
M

4-1
cO

4->
4-1

4->
4->

4-1
4-1

4-1
4-1

4->
4-1

-H
4-1

4->
4

J
4-1

4-1
4-1

4-1
4-1

4->
4-1

4->
4-1

4-1
4-1

4
J

4-1
4-1

4->
4-1

4-1
4-1

C
O

C
O

0
•H

rH
C

O
C

O
£

£
O

r
ft

C
O

e
C

O
C

O
C

O
C

O
C

O
C

O
C

O
C

O
C

O
C

O
4-1

C
O

C
O

C
O

C
O

C
O

co
C

O
C

O
C

O
C

O
C

O
C

O
O

T
C

O
C

O
C

O
C

O
C

O
C

O
C

O
C

O
E

E
-
H

P
V

V
V

V
V

V
V

V
V

V
V

V
V

V
V

V
V

V
V

V
V

V
V

V
V

V
V

V
V

V
V

V
V

V
V

V
V

V
V

V
V

V
V

V
V

c
r
H

u
C

D
ft

><D
C

C
D

C
O

C
H

C
H

rH
C

o
£

ft
p

ft
>

l
£

P
M

M
r
H

o
o

p
rH

4->
C

H
-
p

H
ft

•H
>

1
f
t

ft
M

•rH
E

c
H

co
£

ft
o

C
D

U
4

5
>

4-1
G

i-l
73

r
^

rH
P

H
£

-
*

-
0

rQ
CO

ft
G

C
7

3
G

C
O

4
3

E
0

f
t

co
P

i-l
P

U
C

D
3

0
o

o
•H

co
43

O
C

D
C

D
f
t

4-1
0

O
O

0
f
t

C
D

V
rH

>
G

rC
C

D
3

•H
4-1

c
tfl

o
o

o
0

0
o

'0
C

D
C

H
•
H

rH
rH

C
c

c
C

C
ft

H
U

C
O

C
O

C
O

4-1
4-1

P
-p

P
43

4-1
x

z
rH

C
D

c
4->

4->
fcn

C
G

C
D

C
O

U
U

cO
o

H
H

H
H

H
u

u
U

H
H

H
r4

r4
H

u
H

U
U

H
r4

rH
rH

U
H

u
u

H
H

C
O

C
O

c
C

rH
E

3
C

D
C

D
•H

•H
-
H

i—
1

ft
f
t

tr
u

O
T

4-1
4-1

•P
4-1

4-1
4-1

p
P

4-1
4-1

4-1
P

4-1
4-1

4
J

P
P

P
4

J
4-1

4-1
4-1

P
4-1

4-1
p

P
-P

3
>

l
C

O
co

C
D

-rH
b

C
O

C
O

C
O

C
O

O
T

C
O

co
C

O
C

O
co

C
O

c
o

C
O

C
O

C
O

C
O

C
O

C
O

C
O

C
O

co
C

O
co

co
C

O
C

O
m

C
O

C
O

C
O

co
C

O
co

co
C

O
C

O
co

C
O

C
O

C
O

C
O

4-1
4-1

4
J

4-1

r
_

u
—

u
_

_
_

_
,

_

C
U

**
t^

c
»

O
N

O
«

(
N

m
T

f
in

v
o

o
o

o
c
N

-
r
f
in

t^
™

c
O

c
^

c
r
i
T

t
'*

-
*

'*
T

t
T

t
T

f
T

t
c
n

c
n

c
n

v
i
c
n

O
h

C
S

C
N

C
N

c
N

C
N

c
N

c
N

c
N

C
N

C
N

c
N

c
N

C
N

c
N

c
N

c
N

A
A

A
A

A
A

A
rG

A
A

4
3

A
A

A

£
43

4
3

4
3

4
3

4
3

A
4

3
4

3
X

Z
4

3
4

3
4

3
S

i
t
v

A
u

0
o

C
D

C
D

C
D

•
H

o
0

u
o

C
)

C
)

A
A

4
3

C
U

•H
-H

ft
ft

1
),

C
I)

•H
•H

-
H

cfl
•H

-
H

-rH
4

3
c3

T
J

7
3

7
3

K
K

>
i

f=
73

7
3

c
7

1
n

7
3

7
3

co
e
s

4->
P

4-1
4-1

•P
•H

4-1
4-1

o
4-1

4-1
4-1

p
O

O
O

X
C

O
O

T
O

O
O

4-1
O

T
C

O
C

)
C

O
C

O
C

O
C

O
-H

-
H

73
v

V
V

V
V

V
V

V
V

V
V

V
V

V
V

V

c
»

£
fa

r

coc

pHC
O

PC
O

C
O

>

rH
£

-H
CD

CD
-H

C
O

O
IH

G
C

O
f
t

f
t

CO
£

E
O

P
P

-
P

C
H

4
3

«
P

o
O

tn
c

f
t
p

(0
P

P
H

-H
f
t
c
D

O
C

D
c
D

c
O

H
-
H

p
co

-p
tn

tn
I
f
t

H
O

N
r
H

C
G

c
O

C
H

f
t

4
-
i
p

p
p

p
>

>
;
>

H
C

D
H

P

f
t

-H
C

O
H

>
3

C
D

p
C

O

•H
O

H
-H

3
,4

3X

u
u
u
u
u
u
u
u
u
u
u
u
u

_
-_,

u
_

L
J

U
u

u
U

u
u

u
u

	Front Cover
	Title Page
	Copyright
	Contents
	1: Introduction
	2: Library Header Files
	3: Library Functions And Macros
	4: Index Of Functions
	Back Cover

